Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2550-8188
DOI: 10.1055/a-2550-8188
letter
Visible-Light-Mediated Energy Transfer Enables Intramolecular Cyclization of O‑Acetyloximes to Phenanthridines
This work was financially supported by the Natural Science Foundation of China (No. 22101070), the Natural Science Foundation of Hebei Province (Nos. B2021201015, B2023201108), the Central Government Guides Local Science and Technology Development Fund (No. 246Z1503G), and the Hebei Province Innovation Capability Enhancement Plan Project (No. 22567620H).

Abstract
O‑Acetyloximes underwent N–O bond cleavage/intramolecular cyclization under visible-light-mediated energy transfer to give phenanthridines. In contrast to the well-established approaches, no external oxidant, reductant, or additive is required for this reaction.
Key words
energy-transfer catalysis - organocatalysis - visible-light-mediated reaction - N–O bond cleavage - acetyloxime esters - phenanthridinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2550-8188.
- Supporting Information
Publication History
Received: 12 February 2025
Accepted after revision: 04 March 2025
Accepted Manuscript online:
04 March 2025
Article published online:
09 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chen H, Long H, Cui X, Zhou J, Xu M, Yuan G. J. Am. Chem. Soc. 2014; 136: 2583
- 1b Park GY, Wilson JJ, Song Y, Lippard SJ. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 11987
- 1c Hasebe M, Tsuchiya T. Tetrahedron Lett. 1988; 29: 6287
- 1d Hasebe M, Kogawa K, Tsuchiya T. Tetrahedron Lett. 1984; 25: 3887
- 1e Lu M, Jiang LL, Xu YM, Li S, Tong QX, Zhong JJ. Chin. J. Chem. 2024; 42: 2751
- 1f Krylov IB, Segida OO, Budnikov AS, Terent’ev AO. Adv. Synth. Catal. 2021; 363: 2502
- 2a Li S.-S, Jiang Y.-S, Chen L.-N, Chen D.-N, Luo X.-L, Pan C.-X, Xia P.-J. Org. Lett. 2023; 25: 7009
- 2b Li G.-Q, Meng F.-R, Xiao W.-J, Chen J.-R. Org. Chem. Front. 2023; 10: 2773
- 2c Qian H, Chen J, Zhang B, Cheng Y, Xiao W.-J, Chen J.-R. Org. Lett. 2021; 23: 6987
- 2d Li S.-S, Jiang Y.-S, Luo X.-L, Ran X, Li Y, Wu D, Pan C.-X, Xia P.-J. Sci. China Chem. 2024; 67: 558
- 2e Li J, Yuan Y, Bao X, Sang T, Yang J, Huo C. Org. Lett. 2021; 23: 3712
- 2f Zhu X, Fu H. Chem. Commun. 2021; 57: 9656
- 3 Zhao H.-B, Xu P, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2018; 57: 15153
- 4 Zhan Y, Dai C, Zhu Z, Liu P, Sun P. Chem. Asian J. 2022; 17: e202101388
- 5 Okamura H, Iida M, Kaneyama Y, Nagatsugi F. Org. Lett. 2023; 25: 466
- 6 Liu X, Qing Z, Cheng P, Zheng X, Zeng J, Xie H. Molecules 2016; 21: 1690
- 7a Deb I, Yoshikai N. Org. Lett. 2013; 15: 4254
- 7b Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
- 7c Ma B, Xia Q, Wang D, Jin J.-K, Li Z, Liang Q.-J, Sun M.-Y, Liu D, Liu L.-J, Shu H.-X, Yang J, Li D, He J. Angew. Chem. Int. Ed. 2023; 62: e202300233
- 7d Alonso R, Campos PJ, García B, Rodríguez MA. Org. Lett. 2006; 8: 3521
- 7e Zhang K, Tran C, Yan J, Rodríguez Caro JF, Bignon J, Alami M, Lamaa D, Brachet E, Hamze A. J. Org. Chem. 2024; 89: 15117
- 8a Qi X.-K, Zheng M.-J, Yang C, Zhao Y, Guo L, Xia W. J. Am. Chem. Soc. 2023; 145: 16630
- 8b Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 8c Soni VK, Lee S, Kang J, Moon YK, Hwang HS, You Y, Cho EJ. ACS Catal. 2019; 9: 10454
- 8d Kang J, Hwang HS, Soni VK, Cho EJ. Org. Lett. 2020; 22: 6112
- 8e Patra T, Mukherjee S, Ma J, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10514
- 8f Patra T, Bellotti P, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2020; 59: 3172
- 8g Chen Z.-D, Zhou X, Yi J.-T, Diao H.-J, Chen Q.-L, Lu G, Weng J. Org. Lett. 2022; 24: 2474
- 8h Geniller L, Taillefer M, Clot E, Jaroschik F, Prieto A. Adv. Synth. Catal. 2024; 366: 3430
- 8i Xu J, Zhang Y, Xu R, Wang Y, Shen J, Li W. Org. Chem. Front. 2024; 11: 5122
- 9a Yang B, Wang X.-Y, Huang X.-T, Liu Z.-Y, Li X, Huang T, Li X.-S, Wu L.-Z, Fang R, Liu Q. ACS Catal. 2023; 13: 15331
- 9b Luo X.-L, Ye D.-D, Zheng J, Chen D.-N, Chen L.-N, Li L, Li S.-H, Xia P.-J. Org. Lett. 2024; 26: 559
- 9c Zheng M.-J, Qi X.-K, Yang C, Guo L, Zhao Y, Xia W. Org. Chem. Front. 2024; 11: 1949
- 9d Huang T, Liu C, Yuan P.-F, Wang T, Yang B, Ma Y, Liu Q. Green Chem. 2024; 26: 9859
- 10a Nikitas NF, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2021; 19: 5237
- 10b Netto-Ferreira JC, Lopes da Silva ES, Camara de Lucas N. J. Photochem. Photobiol., A 2011; 225: 135
- 10c Elliott LD, Kayal S, George MW, Booker-Milburn K. J. Am. Chem. Soc. 2020; 142: 14947
- 10d Li X, Großkopf J, Jandl C, Bach T. Angew. Chem. Int. Ed. 2021; 60: 2684
- 10e Xiong Y, Großkopf J, Jandl C, Bach T. Angew. Chem. Int. Ed. 2022; 61: e202200555
- 10f Wang A.-L, Jiang H.-W, Han X.-Y, Luo Y.-C, Xu P.-F. Org. Lett. 2024; 26: 9263
- 11a Kissinger PT, Holt PT, Reilley CN. J. Electroanal. Chem. 1971; 33: 1
- 11b Tsai E, Throckmorton L, McKellar R, Baar M, Kluba M, Marynick D, Rajeshwar K, Ternay AJr. J. Electroanal. Chem. Interfacial Electrochem. 1986; 210: 45
- 11c Vasilieva NV, Irtegova IG, Loskutov VA, Shundrin LA. Mendeleev Commun. 2012; 22: 111
- 11d Vasilieva NV, Irtegova IG, Loskutov VA, Shundrin LA. Mendeleev Commun. 2013; 23: 334
- 12a Ban T, Vu H.-M, Zhang J, Yong J.-Y, Liu Q, Li X.-Q. J. Org. Chem. 2022; 87: 5543
- 12b Jiang Y.-S, Li S.-S, Luo X.-L, Chen L.-N, Chen D.-N, Xia P.-J. Org. Lett. 2023; 25: 6671
- 13a Leibler IN.-M, Tekle-Smith MA, Doyle AG. Nat. Commun. 2021; 12: 6950
- 13b Zhu Y, Gao H, Tu J.-L, Yang C, Guo L, Zhao Y, Xia W. Org. Chem. Front. 2024; 11: 1729
- 14a Yang Y.-Y, Zhang P, Hadjichristidis N. J. Am. Chem. Soc. 2023; 145: 12737
- 14b Li P, Liu R, Zhao Z, Niu F, Hu K. Chem. Commun. 2023; 59: 1777
-
15
Phenanthridines 2a–2af; General Procedure
Two 10 mL Pyrex tubes equipped with magnetic stirrer bars were charged with the appropriate substrate 1 (0.1 mmol) and TXT (1 mol%) in toluene (3.0 mL), and the mixture in each was bubbled with a stream of argon for about 0.5 h. The samples were then irradiated by 3 W LEDs (λ = 405–410 nm) for 6 h. Upon completion of the reaction, the samples were combined, the solvent was removed under vacuum, and the residue was purified by column chromatography (silica gel, PE–EtOAc).
6-Methylphenanthridine (2a)
White solid; yield: 17.0 mg (88%); Rf
= 0.36 (PE–EtOAc, 3:1). 1H NMR (400 MHz, CDCl3): δ = 8.57 (d, J = 8.2 Hz, 1 H), 8.49 (d, J = 8.0 Hz, 1 H), 8.17 (d, J = 8.0 Hz, 1 H), 8.10 (d, J = 8.0 Hz, 1 H), 7.79 (t, J = 7.6 Hz, 1 H), 7.72–7.54 (m, 3 H), 3.02 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 158.9, 143.7, 132.6, 130.6, 129.4, 128.7, 127.4, 126.6, 126.4, 125.9, 123.8, 122.4, 122.0, 23.4. ESI-HRMS: m/z [M + H]+ calcd for C14H12N: 194.0964; found: 194.0964.