Subscribe to RSS
DOI: 10.1055/s-0028-1087379
Thieme Chemistry Journal Awardees - Where are They Now? Regio- and Stereoselective Radical Additions of Thiols to Ynamides
Publication History
Publication Date:
12 December 2008 (online)

Abstract
Regioselective and stereoselective radical additions of arenethiols to various ynamides have been developed. Mixing ynamides and arenethiols in the presence of a catalytic amount of triethylborane affords the corresponding adducts, (Z)-1-amino-2-thio-1-alkenes, in excellent yields with high selectivities. The products can be reduced by means of trifluoroacetic acid and triethylsilane to yield 1-amino-2-thioalkanes.
Key words
radical - hydrothiolation - ynamide - hydrogenation
-
1a
Page P. Organosulfur Chemistry Academic Press; London: 1995. -
1b
Kondo T.Mitsudo T. Chem. Rev. 2000, 100: 3205 -
1c
Arisawa M.Yamaguchi M. Pure Appl. Chem. 2008, 80: 993 -
2a
Renaud P.Sibi MP. Radicals in Organic Synthesis Vol. 2: Wiley-VCH; Weinheim: 2001. Chapter 5.5.3. -
2b
Griesbaum K. Angew. Chem., Int. Ed. Engl. 1970, 9: 273 -
2c
Ichinose Y.Wakamatsu K.Nozaki K.Birbaum J.-L.Oshima K.Utimoto K. Chem. Lett. 1987, 16: 1647 -
2d
Benati L.Capella L.Montevecchi PC.Spagnolo P. J. Chem. Soc., Perkin Trans. 1 1995, 1035 -
2e
Chatgilialoglu C.Ferreri C. Acc. Chem. Res. 2005, 38: 441 - For recent studies including radical hydrothiolations of alkynes, see:
-
3a
Yorimitsu H.Wakabayashi K.Shinokubo H.Oshima K. Bull. Chem. Soc. Jpn. 2001, 74: 1963 -
3b
Miyata O.Nakajima E.Naito T. Chem. Pharm. Bull. 2001, 49: 213 -
3c
Friestad GK.Jiang T.Fioromi GM. Tetrahedron: Asymmetry 2003, 14: 2853 -
3d
Beaufils F.Dénès F.Renaud P. Org. Lett. 2004, 6: 2563 -
3e
Benati L.Leardini R.Minozzi M.Nanni D.Scialpi R.Spagnolo P.Zanardi G. Synlett 2004, 987 -
3f
Beaufils F.Dénès F.Becattini B.Renaud P.Schenk K. Adv. Synth. Catal. 2005, 347: 1587 -
3g
Yasuda H.Uenoyama Y.Nobuta O.Kobayashi S.Ryu I. Tetrahedron Lett. 2008, 49: 367 -
3h
Bencivenni G.Lanza T.Leardini R.Minozzi M.Nanni D.Spagnolo P.Zanardi G. Org. Lett. 2008, 10: 1127 -
4a
Wadsworth DH.Detty MR. J. Org. Chem. 1980, 45: 4611 -
4b
Benati L.Montevecchi PC.Spagnolo P. J. Chem. Soc., Perkin Trans. 1 1991, 2103 -
4c
Montevecchi PC.Navacchia ML.Spagnolo P. Eur. J. Org. Chem. 1998, 1219 ; and references cited therein -
4d
Montevecchi PC.Navacchia ML.Spagnolo P. Tetrahedron 1998, 54: 8207 -
4e
Fernández-Gonzáles M.Alonso R. J. Org. Chem. 2006, 71: 6767 - For boron-substituted alkynes, see:
-
5a
Matteson DS.Peacock K. J. Org. Chem. 1963, 28: 369 -
5b
Lhermitte F.Carboni B. Synlett 1996, 377 -
5c For sulfur-substituted alkynes,
see:
Melandri D.Montevecchi PC.Navacchia ML. Tetrahedron 1999, 55: 12227 -
6a
Zificsak CA.Mulder JA.Hsung RP.Rameshkumar C.Wei L.-L. Tetrahedron 2001, 57: 7575 -
6b
Mulder JA.Kurtz KCM.Hsung RP. Synlett 2003, 1379 - 7 For the first example of a radical
reaction involving ynamides, see:
Marion F.Courillon C.Malacria M. Org. Lett. 2003, 5: 5095 - 8 Our group has reported the hydrothiolation
of ynamides with dithiophosphinic acid via cationic intermediates:
Kanemura S.Kondoh A.Yasui H.Yorimitsu H.Oshima K. Bull. Chem. Soc. Jpn. 2008, 81: 506 - For examples of the synthesis of (Z)-1-amino-2-thio-1-alkene derivatives, see:
-
9a
Apparao S.Schmidt RR. Synthesis 1987, 896 -
9b
Kondo T.Baba A.Nishi Y.Mitsudo T. Tetrahedron Lett. 2004, 45: 1469 - For hydrothiolations under transition-metal catalysis, see:
-
10a
Ogawa A.Ikeda T.Kimura K.Hirao T. J. Am. Chem. Soc. 1999, 121: 5108 -
10b
Cao C.Fraser LR.Love JA. J. Am. Chem. Soc. 2005, 127: 17614 -
10c
Ananikov VP.Malyshev DA.Beletskaya IP.Aleksandorov GG.Eremenko IL. Adv. Synth. Catal. 2005, 347: 1993 ; and references cited therein -
11a
Nozaki K.Oshima K.Utimoto K. J. Am. Chem. Soc. 1987, 109: 2547 -
11b
Nozaki K.Oshima K.Utimoto K. Bull. Chem. Soc. Jpn. 1987, 60: 3465 - 12
Zhang Y.Hsung RP.Tracey MR.Kurtz KCM.Vera EL. Org. Lett. 2004, 6: 1151 - 14 It was reported that arylthiyl radicals
behave as electron-deficient radicals:
Ito O.Fleming MDCM. J. Chem. Soc., Perkin Trans. 2 1989, 689 - 17 Alkenes and ketones can be reduced
under these conditions. See:
Kursaniov DN.Parnes ZN.Bassova GL.Loim NM.Zdanovich VI. Tetrahedron 1967, 23: 2235 - 19
Markgren P.-O.Schaal W.Hämäläinen M.Karlén A.Hallberg A.Samuelsson B.Danielson UH. J. Med. Chem. 2002, 45: 5430 - Chiral vic-aminothio compounds serve as ligands in enantioselective reactions. See:
-
20a
Vargas F.Sehnem JA.Galetto FZ.Braga AL. Tetrahedron 2008, 64: 392 ; and references cited therein -
20b
Jin M.-J.Sarkar SM.Lee D.-H.Qiu H. Org. Lett. 2008, 10: 1235 ; and references cited therein
References and Notes
Typical Experimental
Procedure for Radical Hydrothiolation of Ynamides: Under air,
Et3B (1.0 M hexane solution, 0.050 mL, 0.050 mmol) was
added to a solution of N-benzyl-N-(1-octynyl)-p-toluenesulfonamide (1a, 0.18 g, 0.50 mmol) and benzenethiol
(2a, 0.062 mL, 0.60 mmol) in CH2Cl2 (2.0
mL) at -30 ˚C. The solution was stirred for 30
min at the same temperature and concentrated in vacuo. ¹H
NMR analysis of the crude mixture showed a 94% yield of
the adduct (Z/E >99:1).
Silica gel column chromatography (hexane-EtOAc = 10:1 → 5:1)
afforded
N-benzyl-N-[(Z)-2-phenylthio-1-octenyl]-p-toluenesulfon-amide (3aa)
as a white solid in 89% yield (0.21 g, 0.45 mmol).
3aa: IR (Nujol): 2925, 1456, 1351, 1339,
1161, 1089, 1024, 741, 661 cm-¹. ¹H
NMR (CDCl3): δ = 0.83 (t, J = 7.5 Hz, 3 H), 1.02-1.15
(m, 4 H), 1.16-1.35 (m, 4 H), 1.89 (t, J = 7.0 Hz,
2 H), 2.45 (s, 3 H), 4.46 (s, 2 H), 5.64 (s, 1 H), 6.90-6.94 (m,
2 H), 7.13-7.21 (m, 3 H), 7.26-7.35 (m, 5 H),
7.36-7.41 (m, 2 H), 7.76-7.80 (m, 2 H). ¹³C
NMR (CDCl3): δ = 14.04, 21.57, 22.50,
28.09, 28.25, 31.40, 33.36, 54.15, 124.26, 127.14, 127.62, 127.67,
128.32, 128.58, 128.77, 129.60, 132.31, 133.10, 135.63, 135.83,
142.86, 143.59. Anal. Calcd for C28H33NO2S2:
C, 70.11; H, 6.93. Found: C, 70.00; H, 6.94.
The diastereoselectivity can be explained by steric effect. In reference 4b, Montevecci and Spagnolo insisted that primary alkyl groups are bulkier than a phenylthio group. We thus assume that vinyl radical 5 would exist almost as a Z-form to prevent the steric repulsion between the bulky amide moiety and the alkyl group. The Z-form abstracts hydrogen from benzenethiol selectively. On the other hand, Montevecci et al. also insisted that a methyl group is smaller than a phenyl-thio group. Indeed, the reaction of N-methyl-N-(1-propenyl)-p-toluenesulfonamide with benzenethiol resulted in favorable formation of the corresponding Z-adduct (E/Z = 2:3).
16The addition reaction of phenyl-substituted ynamide PhC≡CNTs(Bn) led to a mixture of stereo- and regioisomers.
18
Typical Experimental
Procedure for Hydrogenations of the Double Bonds of Enamides:
Under an argon atmosphere, Et3SiH (0.048 mL, 0.30 mmol)
was added to a solution of 3aa (0.096 g,
0.20 mmol) in TFA (1.0 mL, 13.5 mmol) at 0 ˚C. The solution
was stirred for 11 h at the same temperature. Then the reaction
was quenched with a sat. NaHCO3 solution and extracted
with EtOAc (2 × 10 mL). The organic extracts were dried
over Na2SO4 and concentrated in vacuo. Silica
gel column chromatography (hexane-EtOAc, 20:1) afforded N-benzyl-N-[2-(phenylthio)-
octyl]-p-toluenesulfonamide (6aa)
as a colorless oil in 87% yield (0.084 g, 0.17 mmol).
6aa: IR (neat): 2926, 2855, 1599, 1456,
1439, 1342, 1162, 1092, 737, 654 cm-¹. ¹H
NMR (CDCl3): δ = 0.88 (t, J = 7.5 Hz, 3 H), 1.02-1.31
(m, 8 H), 1.34-1.46 (m, 1 H), 1.65-1.75 (m, 1
H), 2.42 (s, 3 H), 2.95-3.05 (m, 2 H), 3.26-3.34
(m, 1 H), 4.05 (d, J = 14.5
Hz, 1 H), 4.31 (d, J = 14.5
Hz, 1 H), 7.17-7.32 (m, 12 H), 7.57-7.61 (m, 2
H). ¹³C NMR (CDCl3): δ = 14.07,
21.49, 22.58, 26.62, 28.94, 30.82, 31.64, 47.40, 53.96, 54.26, 126.75,
127.30, 127.96, 128.58, 128.62, 128.83, 129.69, 131.62, 134.66,
135.82, 136.21, 143.37. Anal. Calcd for C28H35NO2S2:
C, 69.81; H, 7.32. Found: C, 70.03; H, 7.38.