Synlett 2009(2): 268-270  
DOI: 10.1055/s-0028-1087515
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Solvent-Free, anti-Michael Addition of Active Methylene Derivatives to β-Nitroacrylates: Eco-Friendly, Chemoselective Synthesis of Polyfunctionalized Nitroalkanes

Roberto Ballini*, Giovanna Bosica, Alessandro Palmieri, Khadijeh Bakhtiari
‘Green Chemistry Group’, Dipartimento di Scienze Chimiche dell’Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
Fax: +39(0737)402297; e-Mail: Roberto.ballini@unicam.it;
Further Information

Publication History

Received 23 October 2008
Publication Date:
15 January 2009 (online)

Abstract

The chemoselective, anti-Michael addition of active ­methylene derivatives to β-nitroacrylates can be easily performed at room temperature, under solvent-free conditions, using a catalytic amount of potassium carbonate as heterogeneous catalyst.

    References and Notes

  • 1a Clark JH. Rhodes CN. RSC Clean Technology Monographs   Clark JH. RSC; Cambridge: 2000. 
  • 1b Clark JH. Acc. Chem. Res.  2002,  35:  791 
  • 2a McKillop A. Young DW. Synthesis  1979,  401 
  • 2b Noritaka M. Misono M. Chem. Rev.  1998,  98:  199 
  • 2c Maitlis PM. Long HC. Quyoum R. Turner ML. Wang Z.-Q. Chem. Commun.  1996,  1 
  • 2d Sheldon RA. Chem. Ind.  1997,  12 
  • 3a Ballini R. Palmieri A. Curr. Org. Chem.  2006,  10:  2145 
  • 3b Ballini R. Palmieri A. Adv. Synth. Catal.  2006,  348:  1154 
  • 3c Ballini R. Palmieri A. Petrini M. Shaikh RR. Adv. Synth. Catal.  2008,  350:  129 
  • 3d Ballini R. Bosica G. Palmieri A. Pizzo F. Vaccaro L. Green Chem.  2008,  10:  541 
  • 3e Ballini R. Barboni L. Castrica L. Fringuelli F. Lanari D. Pizzo F. Vaccaro L. Adv. Synth. Catal.  2008,  350:  1218 
  • 4 Ballini R. Fiorini D. Palmieri A. Tetrahedron Lett.  2004,  45:  7027 
  • 5 Ballini R. Gabrielli S. Palmieri A. Petrini M. Tetrahedron  2008,  64:  5435 
  • 6 Ballini R. Bazán NA. Bosica G. Palmieri A. Tetrahedron Lett.  2008,  49:  3865 
  • 7 Ballini R. Fiorini D. Palmieri A. Tetrahedron Lett.  2005,  46:  1245 
  • 8a Seebach D. Colvin EW. Lehr F. Weller T. Chimia  1979,  33:  1 
  • 8b Rosini G. Ballini R. Synthesis  1988,  833 
  • 8c Ono N. The Nitro Group in Organic Synthesis   Wiley; New York: 2001. 
  • 8d Ballini R. Petrini M. Tetrahedron  2004,  60:  1017 
  • 8e Ballini R. Bosica G. Fiorini D. Palmieri A. Petrini M. Chem. Rev.  2005,  105:  933 
  • 8f Ballini R. Palmieri A. Barboni L. Chem. Commun.  2008,  2975 
  • 9a Ballini R. Fiorini D. Gil MV. Palmieri A. Green Chem.  2003,  5:  475 
  • 9b Sartori G. Ballini R. Bigi F. Bosica G. Maggi R. Righi P. Chem. Rev.  2004,  104:  199 
  • 9c Ballini R. Bosica G. Fiorini D. Palmieri A. Synthesis  2004,  1938 
  • 9d Ballini R. Barboni L. Fiorini D. Giarlo G. Palmieri A. Green Chem.  2005,  7:  828 
  • 9e Ballini R. Fiorini D. Maggi R. Oro C. Palmieri A. Sartori G. Synlett  2006,  1849 
  • 10 Lewandowska E. Tetrahedron  2007,  63:  2107 
11

Spectroscopic Data for Representative Compounds
Compound 6a: oil. IR (neat): 1732, 1555, 1369 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.98 (t, 3 H, J = 7.2 Hz), 1.24 (t, 3 H, J = 7.2 Hz), 1.90-2.00 (m, 1 H), 2.12-2.22 (m, 1 H), 2.34 (s, 3 H), 2.42 (s, 3 H), 3.75 (dd, 0.6 H, J = 3.4, 11.0 Hz), 3.82 (dd, 0.4 H, J = 5.8, 8.9 Hz), 3.92 (d, 0.6 H, J = 11.0 Hz), 4.02 (d, 0.4 H, J = 8.9 Hz), 4.11-4.22 (m, 2 H), 4.48-4.53 (m, 0.4 H), 4.96-5.09 (m, 0.6 H). ¹³C NMR (100 MHz, CDCl3): δ = 10.8, 14.0, 24.5, 31.0, 46.6, 47.3, 62.3, 62.4, 66.9, 88.5, 89.9, 169.2, 169.6, 200.2, 200.6. Anal. Calcd for C12H19NO6 (273.283): C, 52.74; H, 7.01; N, 5.13. Found: C, 52.01; H, 6.81; N, 4.98.
Compound 6b: oil. IR (neat): 1738, 1557, 1370 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.20-1.30 (m, 9 H), 1.55 (d, 1.35 H, J = 6.8 Hz), 1.65 (d, 1.65 H, J = 6.8 Hz), 3.69 (d, 0.45 H, J = 9.4 Hz), 3.76 (dd, 0.55 H, J = 5.1, 8.1 Hz). 3.88 (d, 0.55 H, J = 7.7 Hz), 3.96 (dd, 0.45 H, J = 5.5, 9.4 Hz), 4.12-4.28 (m, 6 H), 4.74-4.81 (m, 0.45 H), 4.89-4.96 (m, 0.55 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.0, 14.1, 15.2, 17.5, 41.8, 47.8, 51.0, 51.5, 62.2, 62.4, 62.5, 81.0, 81.3, 167.0, 167.4, 169.1. Anal. Calcd for C13H21NO8 (319.308): C, 48.90; H, 6.63; N, 4.39. Found: C, 49.01; H, 6.61; N, 4.27.
Compound 6c: waxy solid. IR (neat): 1732, 1554, 1370 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.87 (t, 3 H, J = 7.3 Hz), 1.11-1.41 (m, 5 H), 1.61-2.40 (m, 2 H), 4.05-4.13 (m, 2 H), 4.18-4.30 (m, 1 H), 4.58-4.79 (m, 0.4 H), 4.81-4.87 (m, 0.6 H), 5.8 (d, 0.6 H, J = 8.7 Hz), 6.16 (d, 0.4 H, J = 10.6 Hz), 7.37-7.60 (m, 6 H), 7.85-8.00 (m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.4, 13.6, 13.9, 14.0, 19.6, 19.8, 33.3, 34.0, 49.0, 49.2, 56.0, 56.4, 62.2, 62.3, 87.1, 88.0, 128.9, 129.1, 133.6, 134, 3, 136.0, 136.5, 169.2, 169.9, 193.5, 193.6, 193.7, 194.0. Anal. Calcd for C23H25NO6 (411.451): C, 67.14; H, 6.12; N, 3.40. Found: C, 67.81; H, 7.11; N, 3.87.

12

The GLC analyses were performed with an SE-54 fused silica capillary column (25 m, 0.32 mm internal diameter), FID detector, and nitrogen as carrier gas. β-Nitroacrylates were prepared by the standard procedure. [4] Typical Procedure for the Conjugate Addition of Active Methylene 5 to β-Nitroacrylates 1: Nitroacrylate 1 (1 mmol), active methylene derivatives 5 (1 mmol), and K2CO3 (13.8 mg, 0.1 mmol) were mixed by magnetical stirring for the appropriate time (Table  [¹] , monitored by TLC). Then, the mixture was directly charged onto a chromatographic column (cyclohexane-EtOAc) allowing the pure products 6.