Subscribe to RSS
DOI: 10.1055/s-0028-1087524
A Facile Total Synthesis of All Stereoisomers of Tarchonanthuslactone and Euscapholide from Chiral Epichlorohydrin
Publication History
Publication Date:
15 January 2009 (online)
Abstract
A versatile and facile synthetic route to all the stereoisomers of tarchonanthuslactone and euscapholide was developed using epichlorohydrin as the source of all the chiral centers.
Key words
tarchnanthuslactone - euscapholide - epichlorohydrin - diversity - total synthesis
- 1
Harris JM.Li M.Scott JG.O’Doherty GA. In Strategies and Tactics in Organic Synthesis Vol. 5:Harmata M. Elsevier; London: 2004. p.221-253 - 2
Dakeda JM.Okada Y.Masuda T.Hirata E.Takushi A.Otsuka H. Phytochemistry 1998, 49: 2565 - 3
Dong M.Zhang Q.Hirota M. Tian. Chan. Yau. Yu. Kaifa. 2004, 16: 290; Chem. Abstr. 2004, 143, 33891 - 4
Bohlmann F.Suwita A. Phytochemistry 1979, 18: 677 - 5
Hsu FL.Chen YC.Cheng JT. Planta Med. 2000, 66: 228 - 6
Fu X.Sevenet T.Hamid A.Hadi A.Remy F.Pais M. Phytochemistry 1993, 33: 1272 - 7
Murga J.Garcia-Fortanet J.Corda M.Marco JA.
J. Org. Chem. 2004, 69: 7277 - 8
Jodynis-Liebert J.Murias M.Bloszyk E. Planta Med. 2000, 66: 199 - 9
Yadav JS.Kumar NN.Reddy MS.Prasad AR. Tetrahedron 2007, 63: 2689 ; and references therein -
10a
Nakada T.Hata N.Iida K.Oishi T. Tetrahedron Lett. 1987, 46: 5661 -
10b
Murga J.Garcia-Fortanet J.Corda M.Marco JA. Tetrahedron Lett. 2003, 44: 7909 -
11a
Umarye JD.Lessmann T.Garcia AB.Mamane V.Sommers S.Waldmann H. Chem. Eur. J. 2007, 13: 3305 -
11b
Curran DP.Moura-Letts G.Pohlman M. Angew. Chem. Int. Ed. 2006, 45: 2423 -
12a
Enders D.Steinbusch D. Eur. J. Org. Chem. 2003, 4450 -
12b
Binder JT.Kirsch SF. Chem. Commun. 2007, 4164 -
13a
Ok T.Jeon A.Lim JJ.Hong CS.Lee H.-S.
J. Org. Chem. 2007, 72: 7390 -
13b
Burova SA.McDonald FE. J. Am. Chem. Soc. 2004, 126: 2495 -
13c
Gaunt MJ.Hook DE.Tanner HR.Ley SV. Org. Lett. 2003, 5: 4815 - 14
Jacobsen E. Acc. Chem. Res. 2000, 33: 421 - 15
Herb C.Dettner F.Maier ME. Eur. J. Org. Chem. 2005, 728 - 16
Yamaguchi M.Hirao I. Tetrahedron Lett. 1983, 24: 391 - 18
Constantino MG.Carvalho I.Jose da Silva GV.Archanjo FC. Molecules 1996, 1: 72 - 19
Barbazanges M.Meyer C.Cossy J. Org. Lett. 2007, 9: 3245 - 20
Müller T.Margraf D.Syha Y. J. Am. Chem. Soc. 2005, 127: 10852 - 21
Aggarwal VK.Bae I.Lee H.-Y. Tetrahedron 2004, 60: 9725 - 22
Garaas SD.Hunter TJ.O’Doherty GA. J. Org. Chem. 2002, 67: 2682 - 23
Takeda Y.Okada Y.Masuda T.Hirata E.Shinzato T.Takushi A.Yu Q.Otsuka H. Chem. Pharm. Bull. 2000, 48: 752
References and Notes
All new compounds showed satisfactory
analytical data for the assigned structure and purity. Spectroscopic
Data for Selected Compounds
Compound 1d: [α]D +142.8
(c 0.55, CHCl3), lit.
[²]
[α]³0 +115.5
(c 1.52, MeOH). ¹H
NMR (400 MHz, CDCl3): δ = 6.88-6.84
(dt, J = 10.1,
3.4 Hz, 1 H), 6.01-5.98 (dt, J = 9.8, 1.8
Hz, 1 H), 4.65-4.58 (m, 1 H), 4.09-4.04 (m, 1
H), 2.40-2.37 (m, 2 H), 2.02-1.95 (m, 1 H), 1.77-1.72
(dt, J = 12.6, 4.1
Hz, 1 H), 1.23 (d, J = 6.3
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 163.9,
145.1, 121.2, 76.8, 65.2, 43.6, 29.5, 23.7.
Compound 1a: [α]D -115.5
(c 0.17, CHCl3), lit.
[²²]
[α]²5 -111 (c 1, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 6.89-6.84 (ddd, J = 13.9,
6.7, 4.6 Hz, 1 H), 6.01-5.97 (dt, J = 9.7,
1.7 Hz, 1 H), 4.65-4.58 (m, 1 H), 4.08-4.03 (m,
2 H), 2.40-2.36 (m, 2 H), 2.07 (br, 1 H), 2.02-1.95
(m, 1 H), 1.76-1.71 (dt, J = 12.6,
4.2 Hz, 1 H), 1.23 (d, J = 6.2
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 164.0,
145.2, 121.2, 76.8, 65.2, 43.5, 29.4, 23.7.
Compound 4a: [α]D -76.2
(c 0.22, CHCl3), [α]²5 -76
(c 0.6, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 6.81-6.78 (ddd, J = 10.0,
5.0, 2.4 Hz, 1 H), 6.73-6.70 (m, 2 H), 6.59-6.56
(dd, J = 8.1,
2.0 Hz, 1 H), 5.99-5.96 (ddd, J = 10.0,
3.0, 1.0 Hz, 1 H), 5.05-5.01 (m, 1 H), 4.16 (m, 1 H), 2.81
(t, J = 6.5
Hz, 2 H), 2.58 (t, J = 7.2
Hz, 2 H), 2.29 (m, 1 H), 2.20 (m, 1 H), 2.04-2.01 (m, 1
H), 1.76-1.70 (m, 1 H), 1.23 (d, J = 6.3
Hz, 3 H), 0.95 (s, 9 H), 0.94 (s, 9 H), 0.15 (s, 6 H), 0.14 (s,
6 H). ¹³C NMR (100 MHz, CDCl3): δ = 172.7,
165.0, 145.4, 143.9, 142.2, 132.8, 120.9, 120.4, 115.4, 115.2, 75.2, 67.0,
41.0, 35.8, 30.1, 29.0, 20.5.
Compound 4b: [α]D -9.5
(c 0.2, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 6.85-6.81
(m, 1 H), 6.72 (d, J = 8.1
Hz,
1 H), 6.66 (d, J = 2.0
Hz, 1 H), 6.57-6.55 (dd, J = 8.1,
2.1 Hz, 1 H), 6.01-5.97 (ddd, J = 11.6,
5.8, 1.9 Hz, 1 H), 5.13-5.09 (m, 1 H), 4.22-4.18
(m, 1 H), 2.84-2.77 (m, 2 H), 2.55 (t, J = 6.9
Hz, 2 H), 2.26-2.22 (m, 2 H), 1.89-1.86 (dd, J = 9.4, 3.2
Hz, 1 H), 1.81-1.77 (dd, J = 9.7,
3.2 Hz, 1 H), 1.22 (d, J = 6.3
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 172.4,
164.8, 145.3, 143.6, 142.6, 132.6, 121.1, 120.4, 115.29, 74.3, 66.9,
41.2, 36.2, 30.3, 29.5, 20.4.
Compound 4c: [α]D +9.7
(c 0.3, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 6.85-6.82
(m, 1 H), 6.74-6.65 (m, 2 H), 6.58-6.54 (dd, J = 8.0, 2.0
Hz, 1 H), 6.01-5.97 (ddd, J = 11.6,
5.8, 1.8 Hz, 1 H), 5.15-5.08 (m, 1 H), 4.21-4.18
(m,
1 H), 2.82-2.77 (m, 2 H), 2.55 (t, J = 6.8 Hz,
2 H), 2.25-2.21 (m, 2 H), 1.89-1.85 (dd, J = 9.3, 3.3
Hz, 1 H), 1.81-1.77 (dd, J = 9.5,
3.4 Hz, 1 H), 1.22 (d, J = 6.3
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 172.5,
164.9, 145.4, 143.6, 142.5, 132.6, 121.0, 120.4, 115.2, 74.4, 66.9,
41.2, 36.1, 30.3, 29.5, 20.4.
Compound 4d: [α]D +91.5
(c 0.5, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 6.82-6.79
(ddd, J = 10.3,
5.4, 2.5 Hz,
1 H), 6.73-6.70 (m, 2 H), 6.58-6.55
(dd, J = 8.0,
2.0 Hz, 1 H), 5.99-5.96 (m, 1 H), 5.05-5.01 (m,
1 H), 4.16 (m, 1 H), 2.81 (m, 2 H), 2.58 (t, J = 7.2
Hz, 2 H), 2.28 (m, 1 H), 2.20 (m, 1 H), 2.04-2.01 (m, 1
H), 1.76-1.71 (m, 1 H), 1.23 (d, J = 6.43
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 172.7, 165.0,
145.5, 143.9, 142.2, 132.8, 120.9, 120.3, 115.4, 75.2, 67.1, 40.9,
35.8, 30.1, 28.9, 20.4. Compound 12: ¹H
NMR (400 MHz, C6D6-CDCl3,
1:1): δ = 4.36-4.34 (m, 1 H), 3.84 (m,
1 H), 3.63-3.58 (m, 1 H), 2.55-2.51 (br d, J = 19.0 Hz, 1
H), 2.30-2.23 (dd, J = 19.1,
5.4 Hz, 1 H), 1.64-1.60 (br d, J = 13.9
Hz, 1 H), 1.46-1.42 (m, 1 H), 1.31 (m, 1 H), 1.10-1.03
(m, 1 H), 0.91 (d, J = 6.0
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 169.4,
72.9, 65.9, 61.9, 38.6, 36.5, 29.4, 21.4.