References and Notes
<A NAME="RS09208ST-1A">1a</A>
Herrmann WA.
Köcher C.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2162
<A NAME="RS09208ST-1B">1b</A>
Arduengo AJ.
Acc. Chem. Res.
1999,
32:
913
<A NAME="RS09208ST-1C">1c</A>
Bourissou D.
Guerret O.
Gabbaï FP.
Bertrand G.
Chem. Rev.
2000,
100:
39
<A NAME="RS09208ST-1D">1d</A>
Hahn
FE.
Jahnke MC.
Angew.
Chem. Int. Ed.
2008,
47:
3122
For applications of NHCs as ligands
in catalysis, see:
<A NAME="RS09208ST-2A">2a</A>
N-Heterocyclic
Carbenes in Synthesis
Nolan SP.
Wiley-VCH;
Weinheim:
2006.
<A NAME="RS09208ST-2B">2b</A>
N-Heterocyclic Carbenes
in Transition-Metal Catalysis, In Topics
in Organometallic Chemistry
Vol. 21:
Glorius F.
Springer;
:
2007.
<A NAME="RS09208ST-3">3</A>
Hahn FE.
Angew.
Chem. Int. Ed.
2006,
45:
1348
<A NAME="RS09208ST-4">4</A>
Arduengo AJ.
Harlow RL.
Kline M.
J. Am. Chem. Soc.
1991,
113:
361
<A NAME="RS09208ST-5A">5a</A>
Gstöttmayr CWK.
Böhm VPW.
Herdtweck E.
Grosche M.
Herrmann WA.
Angew.
Chem. Int. Ed.
2002,
41:
1363
<A NAME="RS09208ST-5B">5b</A>
Altenhoff G.
Goddard R.
Lehmann CW.
Glorius F.
Angew. Chem. Int. Ed.
2003,
42:
3690
<A NAME="RS09208ST-5C">5c</A>
Altenhoff G.
Goddard R.
Lehmann CW.
Glorius F.
J. Am. Chem. Soc.
2004,
126:
15195
<A NAME="RS09208ST-5D">5d</A>
Kantchev
EA. B.
O’Brien CJ.
Organ MG.
Angew. Chem. Int. Ed.
2007,
46:
2768
<A NAME="RS09208ST-5E">5e</A>
Würtz S.
Glorius F.
Acc. Chem.
Res.
2008,
41:
1523
<A NAME="RS09208ST-6">6</A> Review:
Schwertfeger H.
Fokin AA.
Schreiner PR.
Angew. Chem. Int. Ed.
2008,
47:
1022
<A NAME="RS09208ST-7">7</A>
Landa S.
Machacek V.
Coll. Czech. Chem. Commun.
1933,
5:
1
<A NAME="RS09208ST-8">8</A>
Hala S.
Landa S.
Hanus V.
Angew. Chem.,
Int. Ed. Engl.
1966,
5:
1045
<A NAME="RS09208ST-9">9</A>
Dahl JE.
Liu SG.
Carlson RMK.
Science
2003,
299:
96
<A NAME="RS09208ST-10A">10a</A>
Fokin AA.
Tkachenko BA.
Gunchenko PA.
Gusev DV.
Schreiner PR.
Chem.
Eur. J.
2005,
11:
7091
<A NAME="RS09208ST-10B">10b</A>
Schreiner PR.
Fokina NA.
Tkachenko BA.
Hausmann H.
Serafin M.
Dahl JEP.
Liu S.
Carlson RMK.
Fokin AA.
J. Org. Chem.
2006,
71:
6709
<A NAME="RS09208ST-10C">10c</A>
Fokin AA.
Schreiner PR.
Fokina NA.
Tkachenko BA.
Hausmann H.
Serafin M.
Dahl JEP.
Liu S.
Carlson RMK.
J. Org.
Chem.
2006,
71:
8532
<A NAME="RS09208ST-10D">10d</A>
Fokina NA.
Tkachenko BA.
Merz A.
Serafin M.
Dahl JEP.
Carlson RMK.
Fokin AA.
Schreiner
PR.
Eur. J. Org. Chem.
2007,
4738
<A NAME="RS09208ST-10E">10e</A>
Tkachenko BA.
Fokina NA.
Chernish LV.
Dahl JEP.
Liu S.
Carlson RMK.
Fokin AA.
Schreiner PR.
Org. Lett.
2006,
8:
1767
<A NAME="RS09208ST-11">11</A>
Schwertfeger H.
Würtele C.
Serafin M.
Hausmann H.
Carlson RMK.
Dahl JEP.
Schreiner PR.
J. Org. Chem.
2008,
73:
7789
<A NAME="RS09208ST-12A">12a</A>
Arduengo AJIII. inventors; US 5077414.
<A NAME="RS09208ST-12B">12b</A>
Herrmann WA.
Köcher C.
Gooßen LJ.
Artus GRJ.
Chem.
Eur. J.
1996,
2:
1627
<A NAME="RS09208ST-12C">12c</A> For a sequential procedure,
see:
Arduengo AJ.
Krafczyk R.
Schmutzler R.
Craig
HA.
Goerlich JR.
Marshall WJ.
Unverzagt M.
Tetrahedron
1999,
55:
14523
<A NAME="RS09208ST-13">13</A>
General Procedure
for the Synthesis of 1,3-Dialkyl-imidazolium Tetrafluoroborate
Paraformaldehyde
(1 equiv) was dissolved in toluene and alkyl amine (1.03 equiv)
were added slowly. The mixture was stirred at r.t. for 1 h. After
cooling to 0 ˚C another 1.03 equiv of alkyl amine
were added. A 3 N solution of HBF4
(1 equiv,
50% in H2O) was added as dropwise and after removal
of cooling glyoxal (1 equiv) was added dropwise. The reaction mixture
was stirred at 60-75 ˚C for 32-70
h. The solvent was removed under reduced pressure. After column
chromatography (SiO2; CH2Cl2-MeOH,
10:1) the crude product was obtained, which was further purified
by recrystallization from CH2Cl2-hexane
mixture.
1,3-Diadamantylimidazolium
Tetrafluoroborate
A total of 0.66 mmol adamantyl amine
and 0.32 mmol of other substrates were used. Reaction mixture was
stirred for 32 h at 60 ˚C. Yield 95 mg (0.22 mmol,
70%).
¹H NMR (400 MHz, CDCl3): δ = 8.80
(t, 4
J
HH = 1.6
Hz, 1 H, NCHN), 7.55 (d, 4
J
HH = 1.6
Hz, 2 H, NCHCHN.), 2.30 (s, 6 H, CH), 2.20 (br, 12 H, CH2),
1.78 (s, 12 H, CH2). ¹³C
NMR (100 MHz, CDCl3): δ = 130.71 (NCHN), 119.09 (NCHCHN),
60.83 (NCR3), 42.52 (CH2) 35.38 (CH), 29.59 (CH2).
ESI-MS: m/z = 337.2638 [M - BF4
-]+. R
f
= 0.66 (CH2Cl2-MeOH,
10:1).
1,3-Di-4-diamantylimidazolium
Tetrafluoroborate (
a
-IDAd˙HBF
4
)
A total of 1.11 mmol diamantyl
amine and 0.54 mmol of other substrates were used. Reaction mixture
was stirred for 70 h at 60 ˚C. Yield 152 mg (0.29
mmol, 53%).
¹H NMR (400 MHz,
CDCl3): δ = 8.84
(t, 4
J
HH = 1.3 Hz, 1 H, NCHN),
7.50 (d, 4
J
HH = 1.3
Hz, 2 H, NCHCHN), 2.16 (s, 12 H, CH2), 2.10 (s, 6 H,
CH), 1.85 (m, 8 H), 1.77 (s, 12 H, CH2). ¹³C
NMR (100 MHz, CDCl3): δ = 131.03 (NCHN), 119.46
(NCHCHN), 60.01 (NCR3), 43.11 (CH2), 38.52, 36.98,
35.70, 25.31. Anal. Calcd for C31H41BF4N2:
C, 70.45; H, 7.82; N, 5.30. Found: C, 70.00; H, 7.82; N, 5.21. ESI-MS: m/z = 441.3254 [M - BF4
-]+. R
f
= 0.51
(CH2Cl2-MeOH, 10:1). IR (ATR): ν = 2901,
2883, 2846, 1562, 1355, 1287, 1073, 1052, 1029, 714 cm-¹.
1,3-Di-1-diamantylimidazolium Tetrafluoroborate (
m
-IDAd˙HBF
4
)
A
total of 1.47 mmol diamantyl amine and 0.72 mmol of other substrates
were used. Reaction mixture was stirred for 65 h at 75 ˚C.
Yield 110 mg (0.21 mmol, 29%).
¹H
NMR (300 MHz, CDCl3): δ = 8.79 (s, 1 H, NCHN),
7.48 (s, 2 H, NCHCHN), 2.58 (s, 4 H), 2.18 (s, 4 H), 2.09 (s, 2
H), 1.56-1.95 (m, 28 H). ¹³C
NMR (75 MHz, CDCl3): δ = 132.52 (NCHN), 119.02
(NCHCHN), 65.63 (NCR3), 47.11, 38.76, 38.32, 37.24, 36.19,
35.94, 32.13, 28.84, 24.26. Anal. Calcd for C31H41BF4N2:
C, 70.45; H, 7.82; N, 5.30. Found: C, 69.73; H, 7.63; N, 5.21. ESI-MS: m/z = 441.3268 [M - BF4
-]+. R
f
= 0.49
(CH2Cl2-MeOH, 10:1).
IR
(ATR): ν = 2905, 2854, 1540,
1463, 1444, 1139, 1055, 1037, 1015, 891, 819, 657 cm-¹.
<A NAME="RS09208ST-14A">14a</A>
X-ray
crystal structure analysis of a-IDAd
HBF4: formula C31H41N2BF4˙CH2Cl2, M = 613.39,
colorless crystals 0.30 × 0.25 × 0.25
mm, a = 8.0712
(3), b = 14.4584 (5), c = 25.7643
(9) Å, β = 91.599
(1)˚, V = 3005.44
(19) ų, ρcalc = 1.356
g cm-³, µ = 2.364
mm-¹, empirical absorption correction
(0.537 ≤ T ≤ 0.589), Z = 4, monoclinic,
space group P21/n
(No. 14), λ = 1.54178 Å, T = 223 (2)
K, ω and φ scans, 28618 reflections collected
(±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 5321
independent (R
int = 0.046)
and 4684 observed reflections [I ÷2 σ(I)], 438 refined parameters, R = 0.054, wR
² = 0.145,
max. (min.) residual electron density 0.37
(-0.30)
e Å-³, anion BF4 and
solvent molecule CH2Cl2 heavily disordered,
refined with split positions (PART command) using geometrical (SADI)
and thermal (ISOR) restraints, hydrogen atoms calculated and refined
as riding atoms.
X-ray crystal structure analysis of m-IDAd HBF4: formula C31H41N2BF4˙2
CH2Cl2, M = 698.32,
colorless crystal 0.20 × 0.20 × 0.10
mm, a = 11.6878
(5), b = 18.6313
(8), c = 15.5260
(7) Å, β = 96.909
(2)˚, V = 3356.4
(3) ų, ρcalc = 1.382
g cm-³, µ = 3.615
mm-¹, empirical absorption correction
(0.532 ≤ T ≤ 0.714), Z = 4, monoclinic,
space group P21/c
(No. 14), λ = 1.54178 Å, T = 223 (2)
K, ω and φ scans, 25753 reflections collected
(±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 5866
independent (R
int = 0.060)
and 4210 observed reflections [I ÷2 σ(I)], 481 refined parameters, R = 0.086, wR
² = 0.247,
max. (min.) residual electron density 0.54
(-0.35)
e Å-³, anion BF4 and both
solvent molecules CH2Cl2 heavily disordered,
refined with split positions (PART command) using geometrical (SADI)
and thermal (SIMU and ISOR) restraints, hydrogen atoms calculated
and refined as riding atoms.
Data sets were collected
with a Nonius KappaCCD diffractometer. Programs used: data collection
COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN,
[¹4b]
absorption correction
Denzo,
[¹4c]
structure solution
SHELXS-97,
[¹4d]
structure
refinement SHELXL-97,
[¹4e]
graphics SCHAKAL
(E. Keller, 1997).
CCDC 702245 & 702246 contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RS09208ST-14B">14b</A>
Otwinowski Z.
Minor W.
Methods Enzymol.
1997,
276:
307
<A NAME="RS09208ST-14C">14c</A>
Otwinowski Z.
Borek D.
Majewski W.
Minor W.
Acta Crystallogr., Sect. A: Found.
Crystallogr.
2003,
59:
228
<A NAME="RS09208ST-14D">14d</A>
Sheldrick GM.
Acta Crystallogr., Sect. A: Found. Crystallogr.
1990,
46:
467
<A NAME="RS09208ST-14E">14e</A>
Sheldrick GM.
Acta Crystallogr., Sect. A: Found. Crystallogr.
2008,
64:
112
<A NAME="RS09208ST-15">15</A>
Nonnenmacher M.
Kunz D.
Rominger F.
Oeser T.
Chem. Commun.
2006,
11378
<A NAME="RS09208ST-16">16</A>
1,3-Di-4-diamantylimidazolin-2-ylidene
(
a
-IDAd)
a-IDAd HBF4 (20.5 mg, 0.038
mmol, 1.0 equiv) and KOt-Bu (5.0 mg,
0.045 mmol, 1.2 equiv) were mixed in an NMR tube, THF-d
8 (0.5 mL) was added and
the NMR experiment was carried out.
¹H
NMR (300 MHz, 300 K, THF-d
8): δ = 7.04
(s, 2 H, imid.), 2.12-2.11 (m, 12 H, diam.), 1.97 (s, 6
H, diam.), 1.81 (s, 20 H, diam.). ¹³C
NMR (75 MHz, 300 K, THF-d
8): δ = 211.90
(C, carbene), 114.58 (C, imid.), 55.14 (NCR3, diam.),
45.92 (3 × CH), 40.28 (3 × CH), 38.40 (3 × CH2), 37.82
(3 × CH2), 26.98 (1 × CH).
1,3-Di-1-diamantylimidazolin-2-ylidene (
m
-IDAd)
m-IDAd HBF4 (20.5 mg, 0.038
mmol, 1.0 equiv) and KOt-Bu (7.0 mg,
0.06 mmol, 1.6 equiv) were mixed in an NMR tube, THF-d
8 (0.5 mL) was added and
the NMR experiment was carried out.
¹H
NMR (400 MHz, 300 K, THF-d
8): δ = 6.98
(s, 2 H, imid.), 2.71 (s, 4 H, diam.), 2.08-2.04 (m, 8
H, diam.), 1.96 (m, 2 H, diam.), 1.82-1.72 (m, 18 H, diam.),
1.62 (m, 2 H, diam.), 1.42-1.36 (m, 4 H, diam.). ¹³C
NMR (100 MHz, 300 K, THF-d
8): δ = 215.19
(C, carbene), 114.69 (C, imid.), 60.56 (NCR3), 49.71
(1 × C), 40.63 (2 × C,), 39.66 (1 × C), 38.63
(2 × C), 38.56 (1 × C), 33.95 (2 × C),
33.63 (2 × C), 26.70 (1 × C), 25.50 (1 × C).
<A NAME="RS09208ST-17A">17a</A>
Chemistry
and Biology of Naturally-Occuring Acetylenes and Related Compounds
Lam J.
Breteler H.
Arnason T.
Hansen L.
Elsevier;
Amsterdam:
1988.
<A NAME="RS09208ST-17B">17b</A>
Nicolaou KC.
Dai W.-M.
Angew. Chem.,
Int. Ed. Engl.
1991,
30:
1387
<A NAME="RS09208ST-17C">17c</A>
Frigoli S.
Fuganti C.
Malpezzi L.
Serra S.
Org. Process Res. Dev.
2005,
9:
646
<A NAME="RS09208ST-18">18</A>
Eckhardt M.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
13642
<A NAME="RS09208ST-19">19</A>
Altenhoff G.
Würtz S.
Glorius F.
Tetrahedron
Lett.
2006,
47:
2925
For excellent reviews of NHCs in
organocatalysis, see:
<A NAME="RS09208ST-20A">20a</A>
Enders D.
Niemeier O.
Henseler A.
Chem.
Rev.
2007,
107:
5606
<A NAME="RS09208ST-20B">20b</A>
Marion N.
Díez-Gonzalez S.
Nolan SP.
Angew. Chem. Int. Ed.
2007,
46:
2988
<A NAME="RS09208ST-20C">20c</A>
Enders D.
Balensiefer T.
Acc. Chem. Res.
2004,
37:
534
This becomes obvious in the NHC-catalyzed
conjugate Umpolung, for which many different NHCs have been screened:
<A NAME="RS09208ST-21A">21a</A>
Burstein C.
Tschan S.
Xie X.
Glorius F.
Synthesis
2006,
2418
<A NAME="RS09208ST-21B">21b</A>
Hirano K.
Piel I.
Glorius F.
Adv.
Synth. Catal.
2008,
350:
984
For initial reports see:
<A NAME="RS09208ST-21C">21c</A>
Burstein C.
Glorius F.
Angew. Chem. Int. Ed.
2004,
43:
6205
<A NAME="RS09208ST-21D">21d</A>
Sohn SS.
Rosen EL.
Bode JW.
J. Am. Chem. Soc.
2004,
126:
14370
<A NAME="RS09208ST-22">22</A>
Song JJ.
Tan Z.
Reeves JT.
Fandrick DR.
Yee
NK.
Senanayake C.
Org.
Lett.
2008,
10:
877