Synlett 2009(2): 193-197  
DOI: 10.1055/s-0028-1087676
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Chemistry Journal Awardees - Where are They Now? Synthesis of Diamantane-Derived N-Heterocyclic Carbenes and Applications in Catalysis

Heinrich Richtera, Hartmut Schwertfegerb, Peter R. Schreiner*b, Roland Fröhlicha, Frank Glorius*a
a Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany
Fax: +49(251)8333202; e-Mail: glorius@uni-muenster.de;
b Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
e-Mail: prs@org.chemie.uni-giessen.de;
Further Information

Publication History

Received 27 September 2008
Publication Date:
15 January 2009 (online)

Abstract

Novel diamantyl-substituted imidazolium salts have been synthesized, characterized and, in addition, analyzed by single-crystal structural analysis. The corresponding NHCs (a-IDAd and m-IDAd) have been prepared in solution and have been characterized by NMR. They exhibit increased steric demand and increased lipophilicity relative to the well-known IAd. In comparative studies, these NHCs were tested as ligands in palladium-catalyzed Sonogashira reactions of primary alkyl halides and, in addition, as catalysts in an organocatalyzed silyl enol ether formation.

    References and Notes

  • 1a Herrmann WA. Köcher C. Angew. Chem., Int. Ed. Engl.  1997,  36:  2162 
  • 1b Arduengo AJ. Acc. Chem. Res.  1999,  32:  913 
  • 1c Bourissou D. Guerret O. Gabbaï FP. Bertrand G. Chem. Rev.  2000,  100:  39 
  • 1d Hahn FE. Jahnke MC. Angew. Chem. Int. Ed.  2008,  47:  3122 
  • For applications of NHCs as ligands in catalysis, see:
  • 2a N-Heterocyclic Carbenes in Synthesis   Nolan SP. Wiley-VCH; Weinheim: 2006. 
  • 2b N-Heterocyclic Carbenes in Transition-Metal Catalysis, In Topics in Organometallic Chemistry   Vol. 21:  Glorius F. Springer; : 2007. 
  • 3 Hahn FE. Angew. Chem. Int. Ed.  2006,  45:  1348 
  • 4 Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • 5a Gstöttmayr CWK. Böhm VPW. Herdtweck E. Grosche M. Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1363 
  • 5b Altenhoff G. Goddard R. Lehmann CW. Glorius F. Angew. Chem. Int. Ed.  2003,  42:  3690 
  • 5c Altenhoff G. Goddard R. Lehmann CW. Glorius F. J. Am. Chem. Soc.  2004,  126:  15195 
  • 5d Kantchev EA. B. O’Brien CJ. Organ MG. Angew. Chem. Int. Ed.  2007,  46:  2768 
  • 5e Würtz S. Glorius F. Acc. Chem. Res.  2008,  41:  1523 
  • 6 Review: Schwertfeger H. Fokin AA. Schreiner PR. Angew. Chem. Int. Ed.  2008,  47:  1022 
  • 7 Landa S. Machacek V. Coll. Czech. Chem. Commun.  1933,  5:  1 
  • 8 Hala S. Landa S. Hanus V. Angew. Chem., Int. Ed. Engl.  1966,  5:  1045 
  • 9 Dahl JE. Liu SG. Carlson RMK. Science  2003,  299:  96 
  • 10a Fokin AA. Tkachenko BA. Gunchenko PA. Gusev DV. Schreiner PR. Chem. Eur. J.  2005,  11:  7091 
  • 10b Schreiner PR. Fokina NA. Tkachenko BA. Hausmann H. Serafin M. Dahl JEP. Liu S. Carlson RMK. Fokin AA. J. Org. Chem.  2006,  71:  6709 
  • 10c Fokin AA. Schreiner PR. Fokina NA. Tkachenko BA. Hausmann H. Serafin M. Dahl JEP. Liu S. Carlson RMK. J. Org. Chem.  2006,  71:  8532 
  • 10d Fokina NA. Tkachenko BA. Merz A. Serafin M. Dahl JEP. Carlson RMK. Fokin AA. Schreiner PR. Eur. J. Org. Chem.  2007,  4738 
  • 10e Tkachenko BA. Fokina NA. Chernish LV. Dahl JEP. Liu S. Carlson RMK. Fokin AA. Schreiner PR. Org. Lett.  2006,  8:  1767 
  • 11 Schwertfeger H. Würtele C. Serafin M. Hausmann H. Carlson RMK. Dahl JEP. Schreiner PR. J. Org. Chem.  2008,  73:  7789 
  • 12a Arduengo AJIII. inventors; US  5077414. 
  • 12b Herrmann WA. Köcher C. Gooßen LJ. Artus GRJ. Chem. Eur. J.  1996,  2:  1627 
  • 12c For a sequential procedure, see: Arduengo AJ. Krafczyk R. Schmutzler R. Craig HA. Goerlich JR. Marshall WJ. Unverzagt M. Tetrahedron  1999,  55:  14523 
  • 14a

    X-ray crystal structure analysis of a-IDAd HBF4: formula C31H41N2BF4˙CH2Cl2, M = 613.39, colorless crystals 0.30 × 0.25 × 0.25 mm, a = 8.0712 (3), b= 14.4584 (5), c = 25.7643 (9) Å, β = 91.599 (1)˚, V = 3005.44 (19) ų, ρcalc = 1.356 g cm, µ = 2.364 mm, empirical absorption correction (0.537 ≤ T ≤ 0.589), Z = 4, monoclinic, space group P21/n (No. 14), λ = 1.54178 Å, T = 223 (2) K, ω and φ scans, 28618 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å, 5321 independent (R int = 0.046) and 4684 observed reflections [I ÷2 σ(I)], 438 refined parameters, R = 0.054, wR ² = 0.145, max. (min.) residual electron density 0.37
    (-0.30) e Å, anion BF4 and solvent molecule CH2Cl2 heavily disordered, refined with split positions (PART command) using geometrical (SADI) and thermal (ISOR) restraints, hydrogen atoms calculated and refined as riding atoms.
    X-ray crystal structure analysis of m-IDAd HBF4: formula C31H41N2BF4˙2 CH2Cl2, M = 698.32, colorless crystal 0.20 × 0.20 × 0.10 mm, a = 11.6878 (5), b= 18.6313 (8), c = 15.5260 (7) Å, β = 96.909 (2)˚, V = 3356.4 (3) ų, ρcalc = 1.382 g cm, µ = 3.615 mm, empirical absorption correction (0.532 ≤ T ≤ 0.714), Z = 4, monoclinic, space group P21/c (No. 14), λ = 1.54178 Å, T = 223 (2) K, ω and φ scans, 25753 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å, 5866 independent (R int = 0.060) and 4210 observed reflections [I ÷2 σ(I)], 481 refined parameters, R = 0.086, wR ² = 0.247, max. (min.) residual electron density 0.54
    (-0.35) e Å, anion BF4 and both solvent molecules CH2Cl2 heavily disordered, refined with split positions (PART command) using geometrical (SADI) and thermal (SIMU and ISOR) restraints, hydrogen atoms calculated and refined as riding atoms.
    Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN, [¹4b] absorption correction Denzo, [¹4c] structure solution SHELXS-97, [¹4d] structure refinement SHELXL-97, [¹4e] graphics SCHAKAL (E. Keller, 1997).
    CCDC 702245 & 702246 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, e-mail: deposit@ccdc.cam.ac.uk].

  • 14b Otwinowski Z. Minor W. Methods Enzymol.  1997,  276:  307 
  • 14c Otwinowski Z. Borek D. Majewski W. Minor W. Acta Crystallogr., Sect. A: Found. Crystallogr.  2003,  59:  228 
  • 14d Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr.  1990,  46:  467 
  • 14e Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr.  2008,  64:  112 
  • 15 Nonnenmacher M. Kunz D. Rominger F. Oeser T. Chem. Commun.  2006,  11378 
  • 17a Chemistry and Biology of Naturally-Occuring Acetylenes and Related Compounds   Lam J. Breteler H. Arnason T. Hansen L. Elsevier; Amsterdam: 1988. 
  • 17b Nicolaou KC. Dai W.-M. Angew. Chem., Int. Ed. Engl.  1991,  30:  1387 
  • 17c Frigoli S. Fuganti C. Malpezzi L. Serra S. Org. Process Res. Dev.  2005,  9:  646 
  • 18 Eckhardt M. Fu GC. J. Am. Chem. Soc.  2003,  125:  13642 
  • 19 Altenhoff G. Würtz S. Glorius F. Tetrahedron Lett.  2006,  47:  2925 
  • For excellent reviews of NHCs in organocatalysis, see:
  • 20a Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 20b Marion N. Díez-Gonzalez S. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2988 
  • 20c Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  534 
  • This becomes obvious in the NHC-catalyzed conjugate Umpolung, for which many different NHCs have been screened:
  • 21a Burstein C. Tschan S. Xie X. Glorius F. Synthesis  2006,  2418 
  • 21b Hirano K. Piel I. Glorius F. Adv. Synth. Catal.  2008,  350:  984 
  • For initial reports see:
  • 21c Burstein C. Glorius F. Angew. Chem. Int. Ed.  2004,  43:  6205 
  • 21d Sohn SS. Rosen EL. Bode JW. J. Am. Chem. Soc.  2004,  126:  14370 
  • 22 Song JJ. Tan Z. Reeves JT. Fandrick DR. Yee NK. Senanayake C. Org. Lett.  2008,  10:  877 
13

General Procedure for the Synthesis of 1,3-Dialkyl-imidazolium Tetrafluoroborate
Paraformaldehyde (1 equiv) was dissolved in toluene and alkyl amine (1.03 equiv) were added slowly. The mixture was stirred at r.t. for 1 h. After cooling to 0 ˚C another 1.03 equiv of alkyl amine were added. A 3 N solution of HBF4
(1 equiv, 50% in H2O) was added as dropwise and after removal of cooling glyoxal (1 equiv) was added dropwise. The reaction mixture was stirred at 60-75 ˚C for 32-70 h. The solvent was removed under reduced pressure. After column chromatography (SiO2; CH2Cl2-MeOH, 10:1) the crude product was obtained, which was further purified by recrystallization from CH2Cl2-hexane mixture.
1,3-Diadamantylimidazolium Tetrafluoroborate A total of 0.66 mmol adamantyl amine and 0.32 mmol of other substrates were used. Reaction mixture was stirred for 32 h at 60 ˚C. Yield 95 mg (0.22 mmol, 70%).
¹H NMR (400 MHz, CDCl3): δ = 8.80 (t, 4 J HH = 1.6 Hz, 1 H, NCHN), 7.55 (d, 4 J HH = 1.6 Hz, 2 H, NCHCHN.), 2.30 (s, 6 H, CH), 2.20 (br, 12 H, CH2), 1.78 (s, 12 H, CH2). ¹³C NMR (100 MHz, CDCl3): δ = 130.71 (NCHN), 119.09 (NCHCHN), 60.83 (NCR3), 42.52 (CH2) 35.38 (CH), 29.59 (CH2). ESI-MS: m/z = 337.2638 [M - BF4 -]+. R f = 0.66 (CH2Cl2-MeOH, 10:1).
1,3-Di-4-diamantylimidazolium Tetrafluoroborate ( a -IDAd˙HBF 4 ) A total of 1.11 mmol diamantyl amine and 0.54 mmol of other substrates were used. Reaction mixture was stirred for 70 h at 60 ˚C. Yield 152 mg (0.29 mmol, 53%).
¹H NMR (400 MHz, CDCl3): δ = 8.84 (t, 4 J HH= 1.3 Hz, 1 H, NCHN), 7.50 (d, 4 J HH = 1.3 Hz, 2 H, NCHCHN), 2.16 (s, 12 H, CH2), 2.10 (s, 6 H, CH), 1.85 (m, 8 H), 1.77 (s, 12 H, CH2). ¹³C NMR (100 MHz, CDCl3): δ = 131.03 (NCHN), 119.46 (NCHCHN), 60.01 (NCR3), 43.11 (CH2), 38.52, 36.98, 35.70, 25.31. Anal. Calcd for C31H41BF4N2: C, 70.45; H, 7.82; N, 5.30. Found: C, 70.00; H, 7.82; N, 5.21. ESI-MS: m/z = 441.3254 [M - BF4 -]+. R f = 0.51 (CH2Cl2-MeOH, 10:1). IR (ATR): ν = 2901, 2883, 2846, 1562, 1355, 1287, 1073, 1052, 1029, 714 cm.
1,3-Di-1-diamantylimidazolium Tetrafluoroborate ( m -IDAd˙HBF 4 ) A total of 1.47 mmol diamantyl amine and 0.72 mmol of other substrates were used. Reaction mixture was stirred for 65 h at 75 ˚C. Yield 110 mg (0.21 mmol, 29%).
¹H NMR (300 MHz, CDCl3): δ = 8.79 (s, 1 H, NCHN), 7.48 (s, 2 H, NCHCHN), 2.58 (s, 4 H), 2.18 (s, 4 H), 2.09 (s, 2 H), 1.56-1.95 (m, 28 H). ¹³C NMR (75 MHz, CDCl3): δ = 132.52 (NCHN), 119.02 (NCHCHN), 65.63 (NCR3), 47.11, 38.76, 38.32, 37.24, 36.19, 35.94, 32.13, 28.84, 24.26. Anal. Calcd for C31H41BF4N2: C, 70.45; H, 7.82; N, 5.30. Found: C, 69.73; H, 7.63; N, 5.21. ESI-MS: m/z = 441.3268 [M - BF4 -]+. R f = 0.49 (CH2Cl2-MeOH, 10:1).
IR (ATR): ν = 2905, 2854, 1540, 1463, 1444, 1139, 1055, 1037, 1015, 891, 819, 657 cm.

16

1,3-Di-4-diamantylimidazolin-2-ylidene ( a -IDAd)
a-IDAd HBF4 (20.5 mg, 0.038 mmol, 1.0 equiv) and KOt-Bu (5.0 mg, 0.045 mmol, 1.2 equiv) were mixed in an NMR tube, THF-d 8 (0.5 mL) was added and the NMR experiment was carried out.
¹H NMR (300 MHz, 300 K, THF-d 8): δ = 7.04 (s, 2 H, imid.), 2.12-2.11 (m, 12 H, diam.), 1.97 (s, 6 H, diam.), 1.81 (s, 20 H, diam.). ¹³C NMR (75 MHz, 300 K, THF-d 8): δ = 211.90 (C, carbene), 114.58 (C, imid.), 55.14 (NCR3, diam.), 45.92 (3 × CH), 40.28 (3 × CH), 38.40 (3 × CH2), 37.82 (3 × CH2), 26.98 (1 × CH).
1,3-Di-1-diamantylimidazolin-2-ylidene ( m -IDAd) m-IDAd HBF4 (20.5 mg, 0.038 mmol, 1.0 equiv) and KOt-Bu (7.0 mg, 0.06 mmol, 1.6 equiv) were mixed in an NMR tube, THF-d 8 (0.5 mL) was added and the NMR experiment was carried out.
¹H NMR (400 MHz, 300 K, THF-d 8): δ = 6.98 (s, 2 H, imid.), 2.71 (s, 4 H, diam.), 2.08-2.04 (m, 8 H, diam.), 1.96 (m, 2 H, diam.), 1.82-1.72 (m, 18 H, diam.), 1.62 (m, 2 H, diam.), 1.42-1.36 (m, 4 H, diam.). ¹³C NMR (100 MHz, 300 K, THF-d 8): δ = 215.19 (C, carbene), 114.69 (C, imid.), 60.56 (NCR3), 49.71 (1 × C), 40.63 (2 × C,), 39.66 (1 × C), 38.63 (2 × C), 38.56 (1 × C), 33.95 (2 × C), 33.63 (2 × C), 26.70 (1 × C), 25.50 (1 × C).