Subscribe to RSS
DOI: 10.1055/s-0028-1087811
Guanidine-Urea Bifunctional Organocatalyst for Asymmetric Epoxidation of 1,3-Diarylenones with Hydrogen Peroxide
Publication History
Publication Date:
16 February 2009 (online)
Abstract
A highly enantioselective catalytic epoxidation reaction to the electron-deficient α,β-unsaturated olefin moieties of diarylenones was achieved with high chemical yield by using aqueous hydrogen peroxide in the presence of a newly developed guanidine-urea bifunctional organocatalyst. These functional groups were suggested to perform cooperatively by interacting with guanidine-hydrogen peroxide and urea-enones, respectively.
Key words
guanidine - urea - hydrogen peroxide - epoxidation - electron-deficient olefin
-
1a
Noyori R. Asymmetric Catalysis in Organic Synthesis John Wiley and Sons; New York: 1994. -
1b
Comprehensive Asymmetric
Catalysis
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. -
1c
Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I. Wiley; New York: 2000. -
1d
Lauret C. Tetrahedron: Asymmetry 2001, 12: 2359 - For reviews, see:
-
2a
Porter MJ.Skidmore J. Chem. Commun. 2000, 1215 -
2b
Nemoto T.Ohoshima T.Shibasaki M. J. Synth. Org. Chem. Jpn. 2002, 60: 94 -
2c
Lauret C.Roberts SM. Aldrichimica Acta 2002, 35: 47 -
3a
Noyori R.Aoki M.Sato K. Chem. Commun. 2003, 1977 -
3b
Campos-Martin JM.Blanco-Brieva G.Fierro JLG. Angew. Chem. Int. Ed. 2006, 45: 6962 ; and references cited therein -
4a
Juliá S.Masana J.Vega JC. Angew. Chem., Int. Ed. Engl. 1980, 19: 929 -
4b
Juliá S.Guixer J.Masana J.Rocas J.Colonna S.Annuziata R.Molinari H. J. Chem. Soc., Perkin Trans. 1 1982, 1317 -
5a
Arai S.Tsuge H.Shioiri T. Tetrahedron Lett. 1998, 39: 7563 -
5b
Arai S.Tsuge H.Oku M.Miura M.Shioiri T. Tetrahedron 2002, 58: 1623 -
5c
Dehmlow EV.Düttmann S.Neumann B.Stammler H.-G. Eur. J. Org. Chem. 2002, 2087 -
5d
Berkessel A.Gasch N.Glaubiz K.Koch C. Org. Lett. 2001, 3: 3839 -
5e
Kelly DR.Roberts SM. Biopolymers 2006, 84: 74 -
5f
Berkessel A.Koch B.Toniolo C.Rainaldi M.Broxterman QB.Kaptein B. Biopolymers 2006, 84: 90 -
5g
Geller T.Gerlach A.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5065 -
5h
Geller T.Krüger CM.Militzer H.-C. Tetrahedron Lett. 2004, 45: 5069 -
5i
Yi H.Zou G.Li Q.Chen Q.Tang J.He M.-y. Tetrahedron Lett. 2005, 46: 5665 -
5j
Hori K.Tamura M.Tani K.Nishiwaki N.Ariga M.Tohda Y. Tetrahedron Lett. 2006, 47: 3115 -
5k
Sundén H.Ibrahem I.Córdova A. Tetrahedron Lett. 2006, 47: 99 -
5l
Zhao G.-L.Ibrahem I.Sundén H.Córdova A. Adv. Synth. Catal. 2006, 349: 1210 - 6
Marigo M.Franzén J.Poulsen TB.Zhuang W.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 6964 - 7
Jew S.-s.Lee JH.Jeong B.-S.Yoo M.-S.Kim M.-J.Lee J.Choi S.-h.Lee K.Lah MS.Park H.-g. Angew. Chem. Int. Ed. 2005, 44: 1383 - 8
Wang X.Reisinger CM.List B. J. Am. Chem. Soc. 2008, 130: 6070 -
9a
Ishikawa T.Isobe T. Chem. Eur. J. 2002, 8: 552 -
9b
McManus JC.Carey JS.Taylor RJK. Synlett 2003, 365 -
9c
McManus JC.Genski T.Carey JS.Taylor RJK. Synlett 2003, 369: -
9d
Allingham MT.Howard-Jones A.Murphy PJ.Thomas DA.Caulkett PWR. Tetrahedron Lett. 2003, 44: 8677 -
9e
Kumamoto T.Ebine K.Endo M.Araki Y.Fushimi Y.Miyamoto I.Ishikawa T.Isobe T.Fukuda K. Heterocycles 2005, 66: 347 -
9f
Ishikawa T.Kumamoto T. Synthesis 2006, 737 -
9g
Kita T.Shin B.Hashimoto Y.Nagasawa K. Heterocycles 2007, 73: 241 -
9h
Shin B.Tanaka S.Kita T.Hashimoto Y.Nagasawa K. Heterocycles 2008, 76: 801 -
9i
Terada M.Nakano M. Heterocycles 2008, 1049 -
10a
Sohtome Y.Hashimoto Y.Nagasawa K. Adv. Synth. Catal. 2005, 347: 1643 -
10b
Sohtome Y.Takemura N.Iguchi T.Hashimoto Y.Nagasawa K. Synlett 2006, 144 -
10c
Sohtome Y.Hashimoto Y.Nagasawa K. Eur. J. Org. Chem. 2006, 2894 -
10d
Sohtome Y.Takemura N.Takada K.Takagi R.Iguchi T.Nagasawa K. Chem. Asian J. 2007, 2: 1150 -
10e
Takada K.Takemura N.Cho K.Sohtome Y.Nagasawa K. Tetrahedron Lett. 2008, 49: 1623 -
11a
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Chem. Pharm. Bull. 2004, 52: 477 -
11b
Sohtome Y.Tanatani A.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2004, 45: 5589 -
11c
Maher DJ.Connon SJ. Tetrahedron Lett. 2004, 45: 1301 - 12
Howard-Jones A.Murphy PJ.Thomas DA. J. Org. Chem. 1999, 64: 1039 -
13a
Lu C.-S.Hughes EW.Giguère PA. J. Am. Chem. Soc. 1941, 63: 1507 -
13b
Aida K. J. Inorg. Nucl. Chem. 1963, 25: 165 -
13c
Cooper M.Heaney H.Newbold AJ.Sanderson WR. Synlett 1990, 533 -
13d
Heaney H. Aldrichimica Acta 1993, 26: 35 -
15a
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 -
15b
Wittkopp A.Schreiner PR. Chem. Eur. J. 2003, 9: 407 -
17a
Lattanzi A. Org. Lett. 2005, 7: 2579 -
17b
Li Y.Liu X.Yang Y.Zhao G. J. Org. Chem. 2007, 72: 288 -
17c
Ye J.Wang Y.Chen J.Liang X. Adv. Synth. Catal. 2004, 346: 691 -
17d
Kumaraswamy G.Sastry MNV.Jena N.Kumarb KR.Vairamanic M. Tetrahedron: Asymmetry 2003, 14: 3797 -
17e
Ooi T.Ohara D.Tamura M.Maruoka K. J. Am. Chem. Soc. 2004, 126: 6844 - 21
Sohtome Y.Takemura N.Takagi R.Hashimoto Y.Nagasawa K. Tetrahedron 2008, 64: 9423 ; and references cited therein
References and Notes
Synthesis of Catalyst
1a and Spectral Data for 1a-e
To a solution
of guanidine (S,S)-1f
¹0a (258 mg, 0.317
mmol) in CH2Cl2 (3.0 mL) was added TFA (3.0
mL) at 0 ˚C. The reaction mixture was warmed to r.t. and
stirred for 2 h. The resulting mixture was concentrated in vacuo
to give diamine. To a solution of the diamine in THF (6.0 mL) was
added phenyl isocyanate (0.21 mL, 1.90 mmol), and the mixture was
stirred for 12 h. The resulting mixture was concentrated in vacuo,
and the residue was purified by flash column chromatography on silica
gel (n-hexane-EtOAc = 4:1
to 1:1, CHCl3-MeOH = 9:1)
to give 1a as a TFA salt (Scheme
[¹]
). The counteranion of 1a was exchanged into Cl- by
treatment with sat. aq NH4Cl and EtOAc solution, and
gave 1a as a HCl form in 81% yield
from 1f (219 mg, 0.257 mmol).
Compound 1a: [α]D
²4 -41.2
(c 1.3, CHCl3). ¹H
NMR (400 MHz, CD3OD): δ = 7.33-7.10
(m, 18 H), 6.93 (t, J = 7.4
Hz, 2 H), 4.11 (br s, 2 H), 3.45-3.32 (m, 4 H), 3.16 (t, J = 7.3 Hz, 2
H), 3.03 (dd, J = 4.5,
14.1 Hz, 2 H), 2.79 (dd, J = 9.6,
13.7 Hz, 2 H), 1.59 (m, 2 H), 1.34-1.14 (m, 30 H), 0.88
(t, J = 7.3 Hz,
3 H). ¹³C NMR (100 MHz, CD3OD): δ = 158.51,
156.33, 140.52, 138.97, 130.22, 129.83, 129.68, 127.78, 123.67, 120.18,
52.46 (br), 47.63 (br), 43.12, 39.32, 33.09, 30.78 (br), 30.69,
30.66, 30.49, 30.39, 29.75, 27.99, 23.75, 14.48. ESI-HRMS: m/z calcd for C51H74N7O2 [M + H+]:
816.5904; found: 816.5895.
Compound 1b: [α]D
²5 -11.3
(c 1.1, CHCl3). ¹H
NMR (400 MHz, CD3OD): δ = 7.94 (s,
4 H), 7.44 (s, 2 H), 7.31-7.14 (m, 10 H), 4.14 (br s, 2
H), 3.41 (d, J = 5.0
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.0,
13.9 Hz, 2 H), 2.80 (dd, J = 9.5,
13.9 Hz, 2 H), 1.61 (m, 2 H), 1.34-1.08 (m, 30 H), 0.88
(t, J = 6.9
Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 157.82,
156.31, 142.99, 138.79, 133.13 (q, J
CF = 32.6
Hz), 130.14, 129.66, 127.81, 124.76 (d, J
CF = 271.3
Hz), 120.70, 118.98, 115.79, 52.66 (br) 47.46, 43.10, 39.20, 33.08,
30.75 (br), 30.61, 30.54, 30.47, 30.16, 29.64, 27.92, 23.74, 14.46. ESI-HRMS: m/z calcd for C55H70F12N7O2 [M + H+]: 1088.5399;
found: 1088.5370.
Compound 1c: [α]D
²6 -24.5
(c 1.4, CHCl3). ¹H
NMR (400 MHz, CD3OD): δ = 7.32-7.17
(m, 10 H), 6.97 (d, J = 9.6
Hz, 4 H), 6.46 (t, J = 9.2
Hz, 2 H), 4.10 (br s, 2 H), 3.39 (d, J = 5.5
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.6, 13.8
Hz, 2 H), 2.79 (dd, J = 9.6,
14.2 Hz, 2 H), 1.63 (m, 2 H), 1.35-1.07 (m, 30 H), 0.88
(t, J = 6.4
Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 164.61
(dd, J
CF = 15.3,
243.4 Hz), 157.77, 156.22, 143.55 (t, J
CF = 13.5
Hz), 138.81, 130.18, 129.64, 127.77, 102.09 (dd, J
CF = 8.6,
21.1 Hz), 52.54 (br), 47.49 (br), 43.16, 39.22, 33.07, 30.78 (br),
30.71, 30.65, 30.48, 30.38, 29.76, 28.03, 23.74, 14.50. ESI-HRMS: m/z calcd for C51H70F4N7O2 [M + H+]:
888.5527; found: 888.5572.
Compound 1d: [α]D
²5 -40.4
(c 1.1, CHCl3). ¹H
NMR (400 MHz, CD3OD): δ = 8.04 (s,
4 H), 7.47 (s, 2 H), 3.78 (br s, 2 H), 3.42 (dd, J = 13.8,
5.1 Hz, 2 H), 3.25 (m, 2 H), 3.17 (t, J = 7.4
Hz, 2 H), 1.94 (br, 2 H), 1.58 (m, 2 H), 1.33-1.08 (m, 30
H), 1.03 (d, J = 6.4
Hz, 6 H), 1.01 (d, J = 6.4
Hz, 6 H), 0.88 (t, J = 6.9 Hz,
3 H). ¹³C NMR (100 MHz, CD3OD): δ = 158.30,
156.31, 143.15, 133.20 (q, J
CF = 32.6
Hz), 128.84, 124.78 (d, J
CF = 272.2
Hz), 120.73, 118.84, 115.68, 55.92 (br), 46.04, 43.03, 33.08, 31.04
(br), 30.75 (br), 30.70, 30.62, 30.52, 30.48, 30.19, 29.80, 27.87,
23.74, 20.19, 17.62 14.46. ESI-HRMS: m/z calcd
for C47H70F12N7O2 [M + H+]: 992.5399;
found: 992.5373.
Compound 1e: [α]D
²6 -8.9
(c 1.1, CHCl3). ¹H
NMR (400 MHz, CD3OD): δ = 8.04 (s,
4 H), 7.46 (s, 2 H), 3.91 (br s, 2 H), 3.41-3.14 (m, 6
H), 1.64 (m, 2 H), 1.29 (d, J = 6.9
Hz, 6 H), 1.27-1.10 (m, 30 H), 0.87 (t, J = 6.9
Hz, 3 H). ¹³C NMR (100 MHz, CD3OD): δ = 157.80,
156.25, 143.11, 133.15 (q, J
CF = 32.6
Hz), 128.84, 124.79 (d, J
CF = 272.2
Hz), 120.73, 119.00, 115.72, 47.05 (br), 43.13, 33.08, 30.75 (br),
30.70, 30.61, 30.52, 30.48, 30.14, 29.63, 27.90, 23.74, 18.34, 14.46.
ESI-HRMS: m/z calcd for C43H62F12N7O2 [M + H+]: 936.4773;
found: 936.4734.
We recycled the catalyst 1b five times under the conditions of entry 11 in Table [¹] . In these reactions, the yields and enantioselectivities were as follows: 2nd run: 95% with 90% ee; 3rd run: 99% with 90% ee; 4th run: 99% with 91% ee; and 5th run: 99% with 89% ee.
18
Typical Procedure
for Asymmetric Epoxidation of 4a
A mixture of enone 4a (20.8 mg, 0.10 mmol) and guanidine-urea
organocatalyst (S,S)-1b (5.6 mg, 0.005 mmol, 5 mol%) in
toluene (0.95 mL) was cooled at -10 ˚C. To the
mixture was added 1 M aq NaOH (0.050 mL, 0.050 mmol) and 30% aq
H2O2 (0.051 mL, 0.50 mmol of H2O2).
The mixture was stirred vigorously at -10 ˚C under
argon atmosphere for 6 h. To the reaction mixture was added sat.
aq NH4Cl, and the organic layer was extracted with EtOAc.
The combined organic extracts were dried over MgSO4,
filtered, and concentrated in vacuo. The residue was purified by
flash column chromatography on silica gel (n-hexane-EtOAc = 100:1
to 10:1) to give epoxy ketone 5a (22.3
mg, 99%) and catalyst 1b was quantitatively
recovered (5.6 mg, >99%). The ee and absolute
configuration of the epoxy ketone 5a was
determined by HPLC using a chiral column.
Spectral
Data and HPLC Data for Epoxy Ketone 5a
[α]D
²4 -210.1
(c 0.83, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 6.9 Hz,
2 H), 7.63 (t, J = 7.8
Hz, 1 H), 7.49 (t, J = 7.8
Hz, 2 H), 7.45-7.35 (m, 5 H), 4.31 (d, J = 1.8
Hz, 1 H), 4.08 (d, J = 1.8
Hz, 1 H). HPLC separation conditions: Chiralcel OD-H, 0.46 cm (ϕ) × 25
cm (L), hexane-2-PrOH = 98:2, 1.00 mL/min, t
R(minor) = 19.5
min (2S,3R); t
R(major) = 20.4
min (2R,3S).¹7a
In the case of aliphatic substituted enones, enantioselec-tivities were moderate to low (ex. R¹ = Me, R² = Ph, 99% yield with 41% ee).
20NMR studies were performed in C6D6.