References and Notes
1a
Noyori R.
Asymmetric
Catalysis in Organic Synthesis
John Wiley and
Sons;
New York:
1994.
1b
Comprehensive Asymmetric
Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New
York:
1999.
1c
Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
1d
Lauret C.
Tetrahedron: Asymmetry
2001,
12:
2359
For reviews, see:
2a
Porter MJ.
Skidmore J.
Chem. Commun.
2000,
1215
2b
Nemoto T.
Ohoshima T.
Shibasaki M.
J.
Synth. Org. Chem. Jpn.
2002,
60:
94
2c
Lauret C.
Roberts SM.
Aldrichimica Acta
2002,
35:
47
3a
Noyori R.
Aoki M.
Sato K.
Chem. Commun.
2003,
1977
3b
Campos-Martin JM.
Blanco-Brieva G.
Fierro JLG.
Angew. Chem. Int. Ed.
2006,
45:
6962 ; and references cited therein
4a
Juliá S.
Masana J.
Vega JC.
Angew. Chem., Int. Ed. Engl.
1980,
19:
929
4b
Juliá S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annuziata R.
Molinari H.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
5a
Arai S.
Tsuge H.
Shioiri T.
Tetrahedron Lett.
1998,
39:
7563
5b
Arai S.
Tsuge H.
Oku M.
Miura M.
Shioiri T.
Tetrahedron
2002,
58:
1623
5c
Dehmlow EV.
Düttmann S.
Neumann B.
Stammler H.-G.
Eur.
J. Org. Chem.
2002,
2087
5d
Berkessel A.
Gasch N.
Glaubiz K.
Koch C.
Org. Lett.
2001,
3:
3839
5e
Kelly DR.
Roberts SM.
Biopolymers
2006,
84:
74
5f
Berkessel A.
Koch B.
Toniolo C.
Rainaldi M.
Broxterman QB.
Kaptein B.
Biopolymers
2006,
84:
90
5g
Geller T.
Gerlach A.
Krüger CM.
Militzer H.-C.
Tetrahedron
Lett.
2004,
45:
5065
5h
Geller T.
Krüger
CM.
Militzer H.-C.
Tetrahedron Lett.
2004,
45:
5069
5i
Yi H.
Zou G.
Li Q.
Chen Q.
Tang J.
He M.-y.
Tetrahedron
Lett.
2005,
46:
5665
5j
Hori K.
Tamura M.
Tani K.
Nishiwaki N.
Ariga M.
Tohda Y.
Tetrahedron Lett.
2006,
47:
3115
5k
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2006,
47:
99
5l
Zhao G.-L.
Ibrahem I.
Sundén H.
Córdova A.
Adv. Synth. Catal.
2006,
349:
1210
6
Marigo M.
Franzén J.
Poulsen TB.
Zhuang W.
Jørgensen KA.
J. Am. Chem. Soc.
2005,
127:
6964
7
Jew S.-s.
Lee JH.
Jeong B.-S.
Yoo M.-S.
Kim M.-J.
Lee J.
Choi S.-h.
Lee K.
Lah MS.
Park H.-g.
Angew. Chem. Int. Ed.
2005,
44:
1383
8
Wang X.
Reisinger CM.
List B.
J.
Am. Chem. Soc.
2008,
130:
6070
9a
Ishikawa T.
Isobe T.
Chem.
Eur. J.
2002,
8:
552
9b
McManus JC.
Carey JS.
Taylor RJK.
Synlett
2003,
365
9c
McManus JC.
Genski T.
Carey JS.
Taylor RJK.
Synlett
2003,
369:
9d
Allingham MT.
Howard-Jones A.
Murphy PJ.
Thomas DA.
Caulkett PWR.
Tetrahedron
Lett.
2003,
44:
8677
9e
Kumamoto T.
Ebine K.
Endo M.
Araki Y.
Fushimi Y.
Miyamoto I.
Ishikawa T.
Isobe T.
Fukuda K.
Heterocycles
2005,
66:
347
9f
Ishikawa T.
Kumamoto T.
Synthesis
2006,
737
9g
Kita T.
Shin B.
Hashimoto Y.
Nagasawa K.
Heterocycles
2007,
73:
241
9h
Shin B.
Tanaka S.
Kita T.
Hashimoto Y.
Nagasawa K.
Heterocycles
2008,
76:
801
9i
Terada M.
Nakano M.
Heterocycles
2008,
1049
10a
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Adv. Synth. Catal.
2005,
347:
1643
10b
Sohtome Y.
Takemura N.
Iguchi T.
Hashimoto Y.
Nagasawa K.
Synlett
2006,
144
10c
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Eur.
J. Org. Chem.
2006,
2894
10d
Sohtome Y.
Takemura N.
Takada K.
Takagi R.
Iguchi T.
Nagasawa K.
Chem. Asian J.
2007,
2:
1150
10e
Takada K.
Takemura N.
Cho K.
Sohtome Y.
Nagasawa K.
Tetrahedron
Lett.
2008,
49:
1623
11a
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Chem.
Pharm. Bull.
2004,
52:
477
11b
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron Lett.
2004,
45:
5589
11c
Maher DJ.
Connon SJ.
Tetrahedron
Lett.
2004,
45:
1301
12
Howard-Jones A.
Murphy PJ.
Thomas DA.
J. Org. Chem.
1999,
64:
1039
13a
Lu C.-S.
Hughes EW.
Giguère PA.
J. Am. Chem. Soc.
1941,
63:
1507
13b
Aida K.
J.
Inorg. Nucl. Chem.
1963,
25:
165
13c
Cooper M.
Heaney H.
Newbold AJ.
Sanderson WR.
Synlett
1990,
533
13d
Heaney H.
Aldrichimica
Acta
1993,
26:
35
14
Synthesis of Catalyst
1a and Spectral Data for 1a-e
To a solution
of guanidine (S ,S )-1f
¹0a (258 mg, 0.317
mmol) in CH2 Cl2 (3.0 mL) was added TFA (3.0
mL) at 0 ˚C. The reaction mixture was warmed to r.t. and
stirred for 2 h. The resulting mixture was concentrated in vacuo
to give diamine. To a solution of the diamine in THF (6.0 mL) was
added phenyl isocyanate (0.21 mL, 1.90 mmol), and the mixture was
stirred for 12 h. The resulting mixture was concentrated in vacuo,
and the residue was purified by flash column chromatography on silica
gel (n -hexane-EtOAc = 4:1
to 1:1, CHCl3 -MeOH = 9:1)
to give 1a as a TFA salt (Scheme
[¹ ]
). The counteranion of 1a was exchanged into Cl- by
treatment with sat. aq NH4 Cl and EtOAc solution, and
gave 1a as a HCl form in 81% yield
from 1f (219 mg, 0.257 mmol). Compound 1a : [α]D
²4 -41.2
(c 1.3, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.33-7.10
(m, 18 H), 6.93 (t, J = 7.4
Hz, 2 H), 4.11 (br s, 2 H), 3.45-3.32 (m, 4 H), 3.16 (t, J = 7.3 Hz, 2
H), 3.03 (dd, J = 4.5,
14.1 Hz, 2 H), 2.79 (dd, J = 9.6,
13.7 Hz, 2 H), 1.59 (m, 2 H), 1.34-1.14 (m, 30 H), 0.88
(t, J = 7.3 Hz,
3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 158.51,
156.33, 140.52, 138.97, 130.22, 129.83, 129.68, 127.78, 123.67, 120.18,
52.46 (br), 47.63 (br), 43.12, 39.32, 33.09, 30.78 (br), 30.69,
30.66, 30.49, 30.39, 29.75, 27.99, 23.75, 14.48. ESI-HRMS: m/z calcd for C51 H74 N7 O2 [M + H+ ]:
816.5904; found: 816.5895. Compound 1b : [α]D
²5 -11.3
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.94 (s,
4 H), 7.44 (s, 2 H), 7.31-7.14 (m, 10 H), 4.14 (br s, 2
H), 3.41 (d, J = 5.0
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.0,
13.9 Hz, 2 H), 2.80 (dd, J = 9.5,
13.9 Hz, 2 H), 1.61 (m, 2 H), 1.34-1.08 (m, 30 H), 0.88
(t, J = 6.9
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 157.82,
156.31, 142.99, 138.79, 133.13 (q, J
CF = 32.6
Hz), 130.14, 129.66, 127.81, 124.76 (d, J
CF = 271.3
Hz), 120.70, 118.98, 115.79, 52.66 (br) 47.46, 43.10, 39.20, 33.08,
30.75 (br), 30.61, 30.54, 30.47, 30.16, 29.64, 27.92, 23.74, 14.46. ESI-HRMS: m/z calcd for C55 H70 F12 N7 O2 [M + H+ ]: 1088.5399;
found: 1088.5370. Compound 1c : [α]D
²6 -24.5
(c 1.4, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 7.32-7.17
(m, 10 H), 6.97 (d, J = 9.6
Hz, 4 H), 6.46 (t, J = 9.2
Hz, 2 H), 4.10 (br s, 2 H), 3.39 (d, J = 5.5
Hz, 4 H), 3.18 (t, J = 7.3
Hz, 2 H), 3.07 (dd, J = 4.6, 13.8
Hz, 2 H), 2.79 (dd, J = 9.6,
14.2 Hz, 2 H), 1.63 (m, 2 H), 1.35-1.07 (m, 30 H), 0.88
(t, J = 6.4
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 164.61
(dd, J
CF = 15.3,
243.4 Hz), 157.77, 156.22, 143.55 (t, J
CF = 13.5
Hz), 138.81, 130.18, 129.64, 127.77, 102.09 (dd, J
CF = 8.6,
21.1 Hz), 52.54 (br), 47.49 (br), 43.16, 39.22, 33.07, 30.78 (br),
30.71, 30.65, 30.48, 30.38, 29.76, 28.03, 23.74, 14.50. ESI-HRMS: m/z calcd for C51 H70 F4 N7 O2 [M + H+ ]:
888.5527; found: 888.5572. Compound 1d : [α]D
²5 -40.4
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 8.04 (s,
4 H), 7.47 (s, 2 H), 3.78 (br s, 2 H), 3.42 (dd, J = 13.8,
5.1 Hz, 2 H), 3.25 (m, 2 H), 3.17 (t, J = 7.4
Hz, 2 H), 1.94 (br, 2 H), 1.58 (m, 2 H), 1.33-1.08 (m, 30
H), 1.03 (d, J = 6.4
Hz, 6 H), 1.01 (d, J = 6.4
Hz, 6 H), 0.88 (t, J = 6.9 Hz,
3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 158.30,
156.31, 143.15, 133.20 (q, J
CF = 32.6
Hz), 128.84, 124.78 (d, J
CF = 272.2
Hz), 120.73, 118.84, 115.68, 55.92 (br), 46.04, 43.03, 33.08, 31.04
(br), 30.75 (br), 30.70, 30.62, 30.52, 30.48, 30.19, 29.80, 27.87,
23.74, 20.19, 17.62 14.46. ESI-HRMS: m/z calcd
for C47 H70 F12 N7 O2 [M + H+ ]: 992.5399;
found: 992.5373. Compound 1e : [α]D
²6 -8.9
(c 1.1, CHCl3 ). ¹ H
NMR (400 MHz, CD3 OD): δ = 8.04 (s,
4 H), 7.46 (s, 2 H), 3.91 (br s, 2 H), 3.41-3.14 (m, 6
H), 1.64 (m, 2 H), 1.29 (d, J = 6.9
Hz, 6 H), 1.27-1.10 (m, 30 H), 0.87 (t, J = 6.9
Hz, 3 H). ¹³ C NMR (100 MHz, CD3 OD): δ = 157.80,
156.25, 143.11, 133.15 (q, J
CF = 32.6
Hz), 128.84, 124.79 (d, J
CF = 272.2
Hz), 120.73, 119.00, 115.72, 47.05 (br), 43.13, 33.08, 30.75 (br),
30.70, 30.61, 30.52, 30.48, 30.14, 29.63, 27.90, 23.74, 18.34, 14.46.
ESI-HRMS: m/z calcd for C43 H62 F12 N7 O2 [M + H+ ]: 936.4773;
found: 936.4734.
Scheme 1
15a
Schreiner PR.
Wittkopp A.
Org.
Lett.
2002,
4:
217
15b
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
16 We recycled the catalyst 1b five times under the conditions of entry
11 in Table
[¹ ]
.
In these reactions, the yields and enantioselectivities were as
follows: 2nd run: 95% with 90% ee; 3rd run: 99% with
90% ee; 4th run: 99% with 91% ee; and
5th run: 99% with 89% ee.
17a
Lattanzi A.
Org. Lett.
2005,
7:
2579
17b
Li Y.
Liu X.
Yang Y.
Zhao G.
J. Org. Chem.
2007,
72:
288
17c
Ye J.
Wang Y.
Chen J.
Liang X.
Adv. Synth. Catal.
2004,
346:
691
17d
Kumaraswamy G.
Sastry MNV.
Jena N.
Kumarb KR.
Vairamanic M.
Tetrahedron:
Asymmetry
2003,
14:
3797
17e
Ooi T.
Ohara D.
Tamura M.
Maruoka K.
J. Am. Chem. Soc.
2004,
126:
6844
18
Typical Procedure
for Asymmetric Epoxidation of 4a
A mixture of enone 4a (20.8 mg, 0.10 mmol) and guanidine-urea
organocatalyst (S ,S )-1b (5.6 mg, 0.005 mmol, 5 mol%) in
toluene (0.95 mL) was cooled at -10 ˚C. To the
mixture was added 1 M aq NaOH (0.050 mL, 0.050 mmol) and 30% aq
H2 O2 (0.051 mL, 0.50 mmol of H2 O2 ).
The mixture was stirred vigorously at -10 ˚C under
argon atmosphere for 6 h. To the reaction mixture was added sat.
aq NH4 Cl, and the organic layer was extracted with EtOAc.
The combined organic extracts were dried over MgSO4 ,
filtered, and concentrated in vacuo. The residue was purified by
flash column chromatography on silica gel (n -hexane-EtOAc = 100:1
to 10:1) to give epoxy ketone 5a (22.3
mg, 99%) and catalyst 1b was quantitatively
recovered (5.6 mg, >99%). The ee and absolute
configuration of the epoxy ketone 5a was
determined by HPLC using a chiral column.
Spectral
Data and HPLC Data for Epoxy Ketone 5a
[α]D
²4 -210.1
(c 0.83, CHCl3 ). ¹ H
NMR (400 MHz, CDCl3 ): δ = 8.02 (d, J = 6.9 Hz,
2 H), 7.63 (t, J = 7.8
Hz, 1 H), 7.49 (t, J = 7.8
Hz, 2 H), 7.45-7.35 (m, 5 H), 4.31 (d, J = 1.8
Hz, 1 H), 4.08 (d, J = 1.8
Hz, 1 H). HPLC separation conditions: Chiralcel OD-H, 0.46 cm (ϕ) × 25
cm (L), hexane-2-PrOH = 98:2, 1.00 mL/min, t
R (minor) = 19.5
min (2S ,3R ); t
R (major) = 20.4
min (2R ,3S ).¹7a
19 In the case of aliphatic substituted
enones, enantioselec-tivities were moderate to low (ex. R¹ = Me,
R² = Ph, 99% yield
with 41% ee).
20 NMR studies were performed in C6 D6 .
21
Sohtome Y.
Takemura N.
Takagi R.
Hashimoto Y.
Nagasawa K.
Tetrahedron
2008,
64:
9423 ; and references cited therein