RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087927
Thieme Chemistry Journal Awardees- Where are They Now? An Asymmetric Organocatalytic Sequence towards 4a-Methyl Tetrahydroxanthones: Formal Synthesis of 4-Dehydroxydiversonol
Publikationsverlauf
Publikationsdatum:
16. Februar 2009 (online)
Abstract
Tricyclic systems generated by an asymmetric vinylogous aldol-oxa-Michael reaction of salicylaldehydes with senecialdehyde were further elaborated using a strategy developed by Tietze et al. to generate 4a-methyl tetrahydroxanthones.
Key words
domino vinylogous aldol-oxa-Michael reaction - Wittig reaction - natural products
- For organocatalytic domino reactions:
-
1a
Enders D.Grondal C.Hüttl MM. Angew. Chem. Int. Ed. 2007, 46: 1570; Angew. Chem. 2007, 119: 1590 -
1b For organocatalytic conjugate
addition reactions, see:
Almasi D.Alonso DA.Najera C. Tetrahedron: Asymmetry 2007, 18: 299 -
1c The use of salicylaldehyde
in domino oxa-Michael reactions for the synthesis of chromenes, coumarins,
and related heterocycles has already been reviewed:
Shi Y.-L.Shi M. Org. Biomol. Chem. 2007, 5: 1499 -
2a
Lesch B.Toräng J.Vanderheiden S.Bräse S. Adv. Synth. Catal. 2005, 347: 555 -
2b
Gérard EMC.Sahin H.Encinas A.Bräse S. Synlett 2008, 2702 -
2c
Rao TV.Rele DN.Trivedi GK. J. Chem. Res. 1987, 196 -
2d
Lesch B.Toräng J.Nieger M.Bräse S. Synthesis 2005, 1888 -
2e
Nising CF.Bräse S. Chem. Soc. Rev. 2008, 37: 1218 - 3
Liu K.Chougnet A.Woggon W.-D. Angew. Chem. Int. Ed. 2008, 47: 5827 ; Angew. Chem. 2008, 120, 5911 - 4
Tietze LF.Stecker F.Zinngrebe J.Sommer KM. Chem. Eur. J. 2006, 12: 8770 - 5
Tietze LF.Spiegl DA.Stecker F.Major J.Raith C.Große C. Chem. Eur. J. 2008, 14: 8956 - For a different approach to diversonol, see:
-
6a
Nising CF.Ohnemüller UK.Bräse S. Angew. Chem. Int. Ed. 2006, 45: 307 ; Angew. Chem. 2006, 118, 313 -
6b
Nicolaou KC.Li A. Angew. Chem. Int. Ed. 2008, 47: 6579; Angew. Chem. 2008, 120, 6681 - The Trost group used also an asymmetric catalytic approach towards chromanes. The key step is a palladium-catalyzed etherification of phenols with allylic substrates to yield a tetrasubstituted stereogenic center and subsequent ring closure:
-
7a
Trost BM.Toste FD. J. Am. Chem. Soc. 1998, 120: 9074 -
7b
Trost BM.Shen HC.Dong L.Surivet J.-P. J. Am. Chem. Soc. 2003, 125: 9276 -
7c
Trost BM.Shen HC.Dong L.Surivet J.-P.Sylvain C.
J. Am. Chem. Soc. 2004, 126: 11966 - 9
Franzén J.Marigo M.Fielenbach D.Wabnitz TC.Kjærsgaard A.Jørgensen KA. J. Am. Chem. Soc. 2005, 127: 18296 - For the hydrogenation of benzylic alcohols, see:
-
10a
Suzuki M.Kimura Y.Terashima S. Bull. Chem. Soc. Jpn. 1986, 59: 3559 -
10b
Orsini F.Sello G.Travaini E.Di Gennaro P. Tetrahedron: Asymmetry 2002, 13: 253 -
10c
Couche E.Fkyerat A.Tabacchi R. Helv. Chim. Acta 2003, 86: 210 -
10d
Kolarovic A.Berkes D.Baran P.Povazanec F. Tetrahedron Lett. 2005, 46: 975 - Other Dieckmann condensations generating a 6-6 ring system:
-
12a
Fu X.Pechacek JT.Smith DL.Wheeler DMS. Nat. Prod. Lett. 1992, 1: 213 -
12b
Hill CL.McGrath M.Hunt T.Grogan G. Synlett 2006, 309 -
12c
Stetter H.Heidel H. Chem. Ber. 1966, 99: 2172 - 13
Sheldrick GM. Acta Crystallogr. 2008, A64: 112
References and Notes
Crystal Structure
Study of 4b
Single-crystal X-ray diffraction studies
were carried out on a Nonius KappaCCD diffractometer at 123(2) K
using MoKa radiation (l = 0.71073 Å). The structures
were solved by Direct Methods (SHELXS-9713) and refinement were carried
out using SHELXL-9713 (full-matrix least-squares refinement on F2).
The hydrogen atoms were localized by difference electron density
determination and refined using a ‘riding’ model
(H(O)) free).
4b: Colorless crystals, C14H18O4, M = 250.28,
crystal size 0.50 x 0.45 x 0.40 mm, triclinic, space group P-1 (No.2): a = 5.9907(2) Å, b = 8.5207(3) Å, c = 12.4965(5) Å, α = 97.603(2)º, b = 95.458(2)º, g = 97.465(2)º, V = 622.81(4) Å3, Z = 2, r(calcd) = 1.335
Mg m-3, F(000) = 268, m = 0.097
mm-1,
5344 reflections (2qmax = 55˚), 2715 unique (Rint = 0.025),
168 parameters, 1 restraint, R1 (I > 2s(I)) = 0.036, wR2
(all data) = 0.104, GooF = 1.07, largest diff.
peak and hole 0.264 and -0.228 e Å-3. Crystallographic
data (excluding structure factors) for the structure reported in
this work have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication no. CCDC 717754
(4b). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Selected NMR Data
Compound 4b: ¹H NMR (400 MHz,
CDCl3): δ = 1.42
(s,
3 H), 1.57 (dd, J = 13.5,
9.8 Hz, 1 H), 1.67 (td, J = 13.5
Hz, 1 H), 2.06-2.14 (m, 2 H), 2.28 (s, 3 H), 3.70 (s, 3
H), 3.86-3.90 (m, 1 H), 4.89 (mc, 1 H), 5.25
(mc, 1 H), 6.13 (s, 1 H), 6.24 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 21.9,
28.6, 34.7, 45.5, 55.4, 61.9, 73.9, 89.9, 102.9, 105.9, 108.5, 140.3, 156.2,
157.1.
Compound 9b: ¹H
NMR (400 MHz, CDCl3): δ = 1.21-1.30 (m,
2 H), 1.28 (t, J = 7.3
Hz, 3 H), 2.04 (s, 3 H), 2.28 (s,
3 H), 2.59 (ddd, J = 14.1,
8.0, 1.3 Hz, 1 H), 2.72 (ddd, J = 14.1,
7.3, 1.3 Hz, 1 H), 3.26 (br s, 1 H), 3.86 (s, 3 H), 4.18 (q, J = 7.3 Hz,
2 H), 4.97 (dd, J = 5.8,
5.3 Hz, 1 H), 5.87 (ddd, J = 15.5,
1.3, 1.3 Hz, 1 H), 6.29 (s, 1 H), 6.35 (s, 1 H), 7.02 (ddd, J = 15.5,
7.8, 7.8 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.2,
21.7, 25.3, 38.7, 41.4, 55.4, 60.1, 60.2, 75.5, 103.3, 109.9, 111.0,
139.7, 144.4, 153.0, 158.2, 166.3.
Compound 10b: ¹H
NMR (400 MHz, CDCl3): δ = 1.25
(t, J = 7.1
Hz, 3 H), 1.27 (s, 3 H), 1.53-1.67 (m, 2 H), 1.68-1.85 (m,
4 H), 2.27 (s, 3 H), 2.28-2.34 (m, 2 H), 2.55-2.64
(m, 2 H), 3.80 (s, 3 H), 4.12 (q, J = 7.1
Hz, 2 H), 6.22 (s, 1 H), 6.28 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.2,
16.4, 19.2, 21.6, 23.8, 30.4, 34.5, 38.8, 55.3, 60.2, 75.4, 102.4,
107.0, 110.3, 136.9, 154.1, 157.6, 173.5.
Compound trans-11b: ¹H
NMR (400 MHz, CDCl3): δ = 1.28
(t, J = 7.1
Hz, 3 H), 1.39 (s, 3 H), 2.30 (s, 3 H), 2.50-2.74 (m, 4
H), 3.88 (s, 3 H), 4.18 (q, J = 7.1
Hz, 2 H), 5.87 (d, J = 15.5
Hz, 1 H), 6.30 (s, 1 H), 6.37 (s, 1 H), 6.95 (ddd, J = 15.5,
7.6, 7.6 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.2,
22.4, 23.9, 41.9, 48.5, 56.0, 60.4, 79.5, 104.7, 108.4, 110.8, 125.4,
142.1, 147.7, 160.2, 160.8, 165.9, 190.0.
Compound cis-11b: ¹H
NMR (400 MHz, CDCl3): δ = 1.27 (t, J = 7.2 Hz,
3 H), 1.39 (s, 3 H), 2.30 (s, 3 H), 2.59 (d, J = 16.0
Hz, 1 H), 2.77 (d, J = 16.0
Hz, 1 H), 3.13 (mc, 2 H), 3.88 (s, 3 H), 4.15 (q, J = 7.2 Hz,
2 H), 5.94 (d, J = 11.7
Hz, 1 H), 6.29 (s, 1 H), 6.32-6.40 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.2,
22.4, 23.7, 38.3, 48.5, 56.0, 60.0, 79.9, 104.6, 108.5, 110.7, 122.7,
143.0, 147.6, 160.2, 161.0, 166.1, 190.4.
Compound 12b: ¹H NMR (400 MHz,
CDCl3): δ = 1.22
(t, J = 7.1
Hz, 3 H), 1.36 (s, 3 H), 1.60-1.80 (m, 4 H), 2.25-2.30 (m,
2 H), 2.28 (s, 3 H), 2.56 (d, J = 15.8
Hz, 1 H), 2.70 (d, J = 15.8
Hz, 1 H), 3.86 (s, 3 H), 4.09 (q, J = 7.1
Hz, 2 H), 6.26 (s, 1 H), 6.33 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.1,
19.0, 22.3, 23.5, 34.1, 38.5, 48.6, 56.0, 60.3, 80.0, 104.3, 108.4,
110.7, 147.4, 160.1, 161.2, 173.1, 190.7.
Compound 13b: ¹H NMR (500 MHz,
CDCl3): δ = 1.44
(s,
3 H), 1.70-1.82 (m, 1 H), 1.91-2.00
(m, 1 H), 2.00-2.08 (m, 2 H), 2.31 (s, 3 H), 2.37 (dd, J = 18.7,
5.9 Hz, 1 H), 2.48 (ddd, J = 18.7,
11.6, 6.8 Hz, 1 H), 3.92 (s, 3 H), 6.34 (s, 1 H), 6.35 (s, 1 H),
15.98 (s, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 18.3,
22.4, 25.5, 30.2, 35.9, 56.1, 78.2, 105.4, 108.2, 108.7, 111.2,
147.1, 160.2, 160.6, 180.3, 182.0.