References and Notes
For organocatalytic domino reactions:
1a
Enders D.
Grondal C.
Hüttl MM.
Angew. Chem. Int. Ed.
2007,
46:
1570;
Angew. Chem.
2007,
119:
1590
1b For organocatalytic conjugate
addition reactions, see: Almasi D.
Alonso DA.
Najera C.
Tetrahedron:
Asymmetry
2007,
18:
299
1c The use of salicylaldehyde
in domino oxa-Michael reactions for the synthesis of chromenes, coumarins,
and related heterocycles has already been reviewed: Shi Y.-L.
Shi M.
Org. Biomol.
Chem.
2007,
5:
1499
2a
Lesch B.
Toräng J.
Vanderheiden S.
Bräse S.
Adv. Synth.
Catal.
2005,
347:
555
2b
Gérard EMC.
Sahin H.
Encinas A.
Bräse S.
Synlett
2008,
2702
2c
Rao
TV.
Rele DN.
Trivedi GK.
J. Chem. Res.
1987,
196
2d
Lesch B.
Toräng J.
Nieger M.
Bräse S.
Synthesis
2005,
1888
2e
Nising CF.
Bräse S.
Chem.
Soc. Rev.
2008,
37:
1218
3
Liu K.
Chougnet A.
Woggon W.-D.
Angew.
Chem. Int. Ed.
2008,
47:
5827 ; Angew. Chem. 2008, 120, 5911
4
Tietze LF.
Stecker F.
Zinngrebe J.
Sommer KM.
Chem. Eur. J.
2006,
12:
8770
5
Tietze LF.
Spiegl DA.
Stecker F.
Major J.
Raith C.
Große C.
Chem. Eur. J.
2008,
14:
8956
For a different approach to diversonol,
see:
6a
Nising
CF.
Ohnemüller UK.
Bräse S.
Angew. Chem. Int. Ed.
2006,
45:
307 ; Angew. Chem. 2006, 118, 313
6b
Nicolaou KC.
Li A.
Angew. Chem.
Int. Ed.
2008,
47:
6579;
Angew. Chem. 2008, 120, 6681
The Trost group used also an asymmetric
catalytic approach towards chromanes. The key step is a palladium-catalyzed etherification
of phenols with allylic substrates to yield a tetrasubstituted stereogenic
center and subsequent ring closure:
7a
Trost BM.
Toste FD.
J.
Am. Chem. Soc.
1998,
120:
9074
7b
Trost BM.
Shen HC.
Dong L.
Surivet J.-P.
J. Am.
Chem. Soc.
2003,
125:
9276
7c
Trost BM.
Shen HC.
Dong L.
Surivet J.-P.
Sylvain C.
J. Am. Chem. Soc.
2004,
126:
11966
8
Crystal Structure
Study of 4b
Single-crystal X-ray diffraction studies
were carried out on a Nonius KappaCCD diffractometer at 123(2) K
using MoKa radiation (l = 0.71073 Å). The structures
were solved by Direct Methods (SHELXS-9713) and refinement were carried
out using SHELXL-9713 (full-matrix least-squares refinement on F2).
The hydrogen atoms were localized by difference electron density
determination and refined using a ‘riding’ model
(H(O)) free).
4b: Colorless crystals, C14H18O4, M = 250.28,
crystal size 0.50 x 0.45 x 0.40 mm, triclinic, space group P-1 (No.2): a = 5.9907(2) Å, b = 8.5207(3) Å, c = 12.4965(5) Å, α = 97.603(2)º, b = 95.458(2)º, g = 97.465(2)º, V = 622.81(4) Å3, Z = 2, r(calcd) = 1.335
Mg m-3, F(000) = 268, m = 0.097
mm-1,
5344 reflections (2qmax = 55˚), 2715 unique (Rint = 0.025),
168 parameters, 1 restraint, R1 (I > 2s(I)) = 0.036, wR2
(all data) = 0.104, GooF = 1.07, largest diff.
peak and hole 0.264 and -0.228 e Å-3. Crystallographic
data (excluding structure factors) for the structure reported in
this work have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication no. CCDC 717754
(4b). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
9
Franzén J.
Marigo M.
Fielenbach D.
Wabnitz TC.
Kjærsgaard A.
Jørgensen KA.
J.
Am. Chem. Soc.
2005,
127:
18296
For the hydrogenation of benzylic
alcohols, see:
10a
Suzuki M.
Kimura Y.
Terashima S.
Bull.
Chem. Soc. Jpn.
1986,
59:
3559
10b
Orsini F.
Sello G.
Travaini E.
Di Gennaro P.
Tetrahedron: Asymmetry
2002,
13:
253
10c
Couche E.
Fkyerat A.
Tabacchi R.
Helv.
Chim. Acta
2003,
86:
210
10d
Kolarovic A.
Berkes D.
Baran P.
Povazanec F.
Tetrahedron Lett.
2005,
46:
975
11
Selected NMR Data
Compound 4b: ¹H NMR (400 MHz,
CDCl3): δ = 1.42
(s,
3 H), 1.57 (dd, J = 13.5,
9.8 Hz, 1 H), 1.67 (td, J = 13.5
Hz, 1 H), 2.06-2.14 (m, 2 H), 2.28 (s, 3 H), 3.70 (s, 3
H), 3.86-3.90 (m, 1 H), 4.89 (mc, 1 H), 5.25
(mc, 1 H), 6.13 (s, 1 H), 6.24 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 21.9,
28.6, 34.7, 45.5, 55.4, 61.9, 73.9, 89.9, 102.9, 105.9, 108.5, 140.3, 156.2,
157.1.
Compound 9b: ¹H
NMR (400 MHz, CDCl3): δ = 1.21-1.30 (m,
2 H), 1.28 (t, J = 7.3
Hz, 3 H), 2.04 (s, 3 H), 2.28 (s,
3 H), 2.59 (ddd, J = 14.1,
8.0, 1.3 Hz, 1 H), 2.72 (ddd, J = 14.1,
7.3, 1.3 Hz, 1 H), 3.26 (br s, 1 H), 3.86 (s, 3 H), 4.18 (q, J = 7.3 Hz,
2 H), 4.97 (dd, J = 5.8,
5.3 Hz, 1 H), 5.87 (ddd, J = 15.5,
1.3, 1.3 Hz, 1 H), 6.29 (s, 1 H), 6.35 (s, 1 H), 7.02 (ddd, J = 15.5,
7.8, 7.8 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.2,
21.7, 25.3, 38.7, 41.4, 55.4, 60.1, 60.2, 75.5, 103.3, 109.9, 111.0,
139.7, 144.4, 153.0, 158.2, 166.3.
Compound 10b: ¹H
NMR (400 MHz, CDCl3): δ = 1.25
(t, J = 7.1
Hz, 3 H), 1.27 (s, 3 H), 1.53-1.67 (m, 2 H), 1.68-1.85 (m,
4 H), 2.27 (s, 3 H), 2.28-2.34 (m, 2 H), 2.55-2.64
(m, 2 H), 3.80 (s, 3 H), 4.12 (q, J = 7.1
Hz, 2 H), 6.22 (s, 1 H), 6.28 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.2,
16.4, 19.2, 21.6, 23.8, 30.4, 34.5, 38.8, 55.3, 60.2, 75.4, 102.4,
107.0, 110.3, 136.9, 154.1, 157.6, 173.5.
Compound trans-11b: ¹H
NMR (400 MHz, CDCl3): δ = 1.28
(t, J = 7.1
Hz, 3 H), 1.39 (s, 3 H), 2.30 (s, 3 H), 2.50-2.74 (m, 4
H), 3.88 (s, 3 H), 4.18 (q, J = 7.1
Hz, 2 H), 5.87 (d, J = 15.5
Hz, 1 H), 6.30 (s, 1 H), 6.37 (s, 1 H), 6.95 (ddd, J = 15.5,
7.6, 7.6 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.2,
22.4, 23.9, 41.9, 48.5, 56.0, 60.4, 79.5, 104.7, 108.4, 110.8, 125.4,
142.1, 147.7, 160.2, 160.8, 165.9, 190.0.
Compound cis-11b: ¹H
NMR (400 MHz, CDCl3): δ = 1.27 (t, J = 7.2 Hz,
3 H), 1.39 (s, 3 H), 2.30 (s, 3 H), 2.59 (d, J = 16.0
Hz, 1 H), 2.77 (d, J = 16.0
Hz, 1 H), 3.13 (mc, 2 H), 3.88 (s, 3 H), 4.15 (q, J = 7.2 Hz,
2 H), 5.94 (d, J = 11.7
Hz, 1 H), 6.29 (s, 1 H), 6.32-6.40 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.2,
22.4, 23.7, 38.3, 48.5, 56.0, 60.0, 79.9, 104.6, 108.5, 110.7, 122.7,
143.0, 147.6, 160.2, 161.0, 166.1, 190.4.
Compound 12b: ¹H NMR (400 MHz,
CDCl3): δ = 1.22
(t, J = 7.1
Hz, 3 H), 1.36 (s, 3 H), 1.60-1.80 (m, 4 H), 2.25-2.30 (m,
2 H), 2.28 (s, 3 H), 2.56 (d, J = 15.8
Hz, 1 H), 2.70 (d, J = 15.8
Hz, 1 H), 3.86 (s, 3 H), 4.09 (q, J = 7.1
Hz, 2 H), 6.26 (s, 1 H), 6.33 (s, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 14.1,
19.0, 22.3, 23.5, 34.1, 38.5, 48.6, 56.0, 60.3, 80.0, 104.3, 108.4,
110.7, 147.4, 160.1, 161.2, 173.1, 190.7.
Compound 13b: ¹H NMR (500 MHz,
CDCl3): δ = 1.44
(s,
3 H), 1.70-1.82 (m, 1 H), 1.91-2.00
(m, 1 H), 2.00-2.08 (m, 2 H), 2.31 (s, 3 H), 2.37 (dd, J = 18.7,
5.9 Hz, 1 H), 2.48 (ddd, J = 18.7,
11.6, 6.8 Hz, 1 H), 3.92 (s, 3 H), 6.34 (s, 1 H), 6.35 (s, 1 H),
15.98 (s, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 18.3,
22.4, 25.5, 30.2, 35.9, 56.1, 78.2, 105.4, 108.2, 108.7, 111.2,
147.1, 160.2, 160.6, 180.3, 182.0.
Other Dieckmann condensations generating
a 6-6 ring system:
12a
Fu X.
Pechacek JT.
Smith DL.
Wheeler DMS.
Nat.
Prod. Lett.
1992,
1:
213
12b
Hill CL.
McGrath M.
Hunt T.
Grogan G.
Synlett
2006,
309
12c
Stetter H.
Heidel H.
Chem. Ber.
1966,
99:
2172
13
Sheldrick GM.
Acta
Crystallogr.
2008,
A64:
112