Zusammenfassung
Ziel: Hochvolumige Datensätze der bildgebenden Diagnostik (Direktradiografie, Multi-Slice-CT
etc.) sichern die diagnostische Betreuung. Die bildgebende Diagnostik hat als Querschnittsfach
Schrittmacherfunktion für effektive Workflow-Szenarien übernommen. Für ein effektives
Datenmanagement sind hierfür seit Jahren Konzepte zur Datenkompression diskutiert
worden. Im Februar 2008 hat eine Konsensuskonferenz der Deutschen Röntgengesellschaft
stattgefunden. Es wurden einzelne Datenkompressionstechniken, Kompressionsfaktoren
und deren Organbezug tabellarisch als Empfehlung zusammengestellt. Material und Methoden: Unsere Arbeit gibt eine Gesamtübersicht über den Literaturstand zur Datenkompression,
Technologie (JPEG und JPEG 2000) und Organbezug und analysiert unterschiedliche Workflow-Szenarien.
Dies war Grundlage der Konsensuskonferenz. Die Studien wurden in 4 Level (0 – 3) in
Abhängigkeit zu ihrer Evidenz eingeteilt. Für den höchsten Level 3 konnten 51 Studien
ausgewertet werden. Ergebnisse: Mit Ausnahme der Schädel-CT wird ein einheitlicher Kompressionsfaktor von 1 : 8 empfohlen.
Schädel-CT können ohne diagnostischen Qualitätsverlust mit einem Kompressionswert
von 1:5 komprimiert werden. Aus Workflow-Sicht empfehlen wir, Kompressionen an den
Modalitäten (CT etc.) vorzunehmen. PACS-basierte Kompressionen sind jedoch derzeit
üblich. In diesen Fällen werden allerdings nicht alle Workflow-Vorteile genutzt. Schlussfolgerung: Aus der Literaturübersicht hinsichtlich Technik, Organbezug und unserer Empfehlung
zum Workflow ergibt sich die Forderung an die Industrie, die bildgebenden Modalitäten
mit einem Kompressionsfilter auszustatten. Es gilt, dass grundsätzlich pro Bilddatensatz
nur einmal komprimiert wird.
Abstract
Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ”pacesetter”
due to amazing technical developments (e. g. multislice CT), extensive data volumes,
and especially the well defined workflow-orientated scenarios on a local and (inter)national
level. To make centralized networks sufficient, image data compression has been regarded
as the key to a simple and secure solution. In February 2008 specialized working groups
of the DRG held a consensus conference. They designed recommended data compression
techniques and ratios. Material und Methoden: The purpose of our paper is an international review of the literature of compression
technologies, different imaging procedures (e. g. DR, CT etc.), and targets (abdomen,
etc.) and to combine recommendations for compression ratios and techniques with different
workflows. The studies were assigned to 4 different levels (0 – 3) according to the
evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1 : 8 (excluding cranial scans 1:5). For workflow
reasons data compression should be based on the modalities (CT, etc.). PACS-based
compression is currently possible but fails to maximize workflow benefits. Only the
modality-based scenarios achieve all benefits. Conclusion: Imaging equipment manufacturers are encouraged to improve the compression technology
of their imaging devices (e. g. freely selectable compression ratios in the output
filter). Double compression should be strictly avoided. Lossless compression formats
should be switched off.
Key words
compression - wavelet - jpeg 2000 - image data - workflow - image device
References
1
Braunschweig R, Geis I, Tolksdorf D. et al .
DACS – Data Archiving and Communication Services. Zentrale Archivierung von Krankenhausdaten
– ein ASP-Projekt.
MedR.
2004;
5
353-359
2
Braunschweig R, Geis I, Tolksdorf D.
DACS – Zentrale Krankenhausdatenarchivierung und -kommunikation – ein ASP-Konzept.
Telemedizinführer Deutschland.
2005 / 2006;
192-194
3
Braunschweig R, Kaden I, Schwarzer J.
Activity Based Costing eines RIS/PACS.
Management und Krankenhaus.
2003;
3
12
4
Braunschweig R, Kaden I, Schwarzer J. et al .
Digitalisierung am Klinikum Bergmannstrost – zukunftsweisende Strategien am Beispiel
eines RIS/PACS.
Krankenhaus-IT-Journal.
2003;
5
14-15
5
Braunschweig R, Kaden I, Berend A.
Vom RIS/PACS zum MIS/DACS – Eine Effektivitätsstrategie.
Telemedizinführer Deutschland.
2006 / 2007;
157-161
6
Breeuwer M, Heusdens R, Gunnewiek R K. et al .
Data compression of x-ray cardio-angiographic image series.
Int J Card Imaging.
1995;
11
179-186
7
Moura L, Furuie S S, Gutierrez M A. et al .
Lossy compression techniques, medical images, and the clinician.
MD Comput.
1996;
13
155-159, 172
8
Okkalides D, Efremides S.
Quality assessment of DSA, ultrasound and CT digital images compressed with the JPEG
protocol.
Phy Med Biol.
1994;
39
1407-1421
9
Tuinenburg J C, Koning G, Hekking E. et al .
American College of Cardiology/European Society of Cardiology International Study
of Angiographic Data Compression Phase II: the effects of varying JPEG data compression
levels on the quantitative assessment of the degree of stenosis in digital coronary
angiography. Joint Photographic Experts Group.
J Am Coll Cardiol.
2000;
35
1380-1387
10
Loose R, Braunschweig R, Kotter E. et al .
Kompression Digitaler Bilddaten in der Radiologie-Ergebnisse einer Konsensuskonferenz.
Fortschr Röntgenstr.
2009;
181
32-37
11
Azpiroz-Leehan J, Leder R, Lerallut J F.
Quantitative and qualitative evaluation of filter characteristics for wavelet packet
compression of MR images.
Conf Proc IEEE Eng Med Biol Soc.
2004;
2
1537-1540
12
Baker W A, Hearne S E, Spero L A. et al .
Lossy (15:1) JPEG compression of digital coronary angiograms does not limit detection
of subtle morphological features.
Circulation.
1997;
96
1157-1164
13
Brennecke R, Bürgel U, Simon R. et al .
American College of Cardiology/European Society of Cardiology International Study
of Angiographic Data Compression Phase III: measurement of image quality differences
at varying levels of data compression.
J Am Coll Cardiol.
2000;
35
1388-1397
14
Cahill P T, Vullo T, Hu J H. et al .
Radiologist evaluation of a multispectral image compression algorithm for magnetic
resonance images.
J Digit Imaging.
1998;
11
126-136
15
Chen T J, Chuang K S, Chiang Y C. et al .
A statistical method for evaluation quality of medical images: a case study in bit
discarding and image compression.
Comput Med Imaging Graph.
2004;
28
167-175
16
Cosman P C, Davidson H C, Bergin C J. et al .
Thoracic CT images: effect of lossy image compression on diagnostic accuracy.
Radiology.
1994;
190
517-524
17
DeAngelis G A, Dempsey B, Berr S. et al .
Diagnostic efficacy of compressed digitized real-time sonography of uterine fibroids.
Acad Radiol.
1997;
4
83-89
18
Eraso F E, Analoui M, Watson A B. et al .
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
2002;
93
621-625
19
Erickson B J, Manduca A, Persons K R. et al .
Evaluation of irreversible compression of digitized posterior-anterior chest radiographs.
J Digit Imaging.
1997;
10
97-102
20
Fidler A, Likar B, Pernus F. et al .
Impact of JPEG lossy image compression on quantitative digital subtraction radiography.
Dentomaxillofac Radiol.
2002;
31
106-112
21
Fidler A, Likar B, Pernus F. et al .
Comparative evaluation of JPEG and JPEG2000 compression in quantitative digital subtraction
radiography.
Dentomaxillofac Radiol.
2002;
31
379-384
22
Frank M S, Lee H, Kim Y. et al .
Evaluation of a combined two- and three-dimensional compression method using human
visual characteristics to yield high-quality 10:1 compression of cranial computed
tomography scans.
Invest Radiol.
1994;
29
842-847
23
Goldberg M A, Pivovarov M, Mayo-Smith W W. et al .
Application of wavelet compression to digitized radiographs.
Am J Roentgenol.
1994;
163
463-468
24
Goldberg M A, Gazelle G S, Boland G W. et al .
Focal hepatic lesions: effect of three-dimensional wavelet compression on detection
at CT.
Radiology.
1997;
202
159-165
25
Halpern E J, Levy H M, Newhouse J H. et al .
Quadtree-based data compression of abdominal CT images.
Invest Radiol.
1990;
25
31-38
26
Janhom A, Stelt P F, Sanderink G C.
A comparison of two compression algorithms and the detection of caries.
Dentomaxillofac Radiol.
2002;
31
257-263
27
Kalyanpur van der A, Neklesa V P, Taylor C R. et al .
Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic
transmission.
Radiology.
2000;
217
772-779
28
Karson T H, Chandra S, Morehead A J. et al .
JPEG compression of digital echocardiographic images: impact on image quality.
J Am Soc Echocardiogr.
1995;
8
306-318
29
Kerensky R A, Cusma J T, Kubilis P. et al .
American College of Cardiology/European Society of Cardiology international study
of angiographic data compression phase I. The effects of lossy data compression on
recognition of diagnostic features in digital coronary angiography.
Eur Heart J.
2000;
21
668-678
30
Kihara Y.
Evaluation of diagnostic accuracy of CRT monitor display for personal computer in
the detection of small lung nodules: with particular emphasis on comparison between
JPEG and wavelet compression (Article in Japanese).
Nippon Igaku Hoshasen Gakkai Zasshi.
2001;
61
231-237
31
Ko J P, Chang J, Bomsztyk E. et al .
Effect of CT image compression on computer-assisted lung nodule volume measurement.
Radiology.
2005;
237
83-88 (Epub 2005 Aug 26)
32
Ko J P, Rusinek H, Naidich D P. et al .
Wavelet compression of low-dose chest CT data: effect on lung nodule detection.
Radiology.
2003;
228
70-75 (Epub 2003 May 29)
33
Kocsis O, Costaridou L, Varaki L. et al .
Visually lossless threshold determination for microcalcification detection in wavelet
compressed mammograms.
Eur Radiol.
2003;
13
2390-2396 (Epub 2003 Feb 15)
34
Kondo Y.
Medical image transfer for emergency care utilizing internet and mobile phone.
Nippon Hoshasen Gijutsu Gakkai Zasshi.
2002;
58
1393-1401
35
Koning G, Béretta P, Zwart P. et al .
Effect of lossy data compression on quantitative coronary measurements.
Int J Card Imaging.
1997;
13
261-270
36
Kotter E, Roesner A, Torsten Winterer J. et al .
Evaluation of Lossy data compression of chest X-rays: a receiver operating characteristic
study.
Invest Radiol.
2003;
38
243-249
37
Lee K H, Kim Y H, Kim B H. et al .
Irreversible JPEG 2000 compression of a abdominal CT for primary interpretation: assessment
of visually lossless threshold.
Eur Radiol.
2007;
17
1529-1534 (Epub 2006 Nov 22)
38
Li F, Sone S, Takashima S. et al .
Effects of JPEG and wavelet compression of spiral low-dose ct images on detection
of small lung cancers.
Acta Radiol.
2001;
42
156-160
39
Megibow A J, Rusinek H, Lisi V. et al .
Computed tomography diagnosis utilizing compressed image data: an ROC analysis using
acute appendicitis as a model.
J Digit Imaging.
2002;
15
84-90 (Epub 2002 Sep 26)
40
Ohgiya Y, Gokan T, Nobusawa H. et al .
Acute cerebral infarction: effect of JEPG compression on detection at CT.
Radiology.
2003;
227
124-127 (Epub 2003 Feb 19)
41
Penedo M, Souto M, Tahoces P G. et al .
Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based
set partitioning in hierarchical trees compression of digitized mammograms.
Radiology.
2005;
237
450-457
42
Persons K R, Hangiandreou N J, Charboneau N T. et al .
Evaluation of irreversible JPEG compression for a clinical ultrasound practice.
J Digit Imaging.
2002;
15
15-21 (Epub 2002 Apr 30)
43
Ricke J, Maass P, Lopez Hänninen E. et al .
Wavelet versus JPEG (Joint Photographic Expert Group) and fractal compression. Impact
on the detection of low-contrast details in computed radiographs.
Invest Radiol.
1998;
33
456-463
44
Ringl H, Schernthaner R E, Kulinna-Cosentini C. et al .
Lossy Three-dimensional JPEG2000 Compression of Abdominal CT Images: Assessment of
the Visually Lossless Threshold and Effect of Compression Ratio on Image Quality.
Radiology.
2007;
Epub ahead of print
45
Ringl H, Schernthaner R E, Bankier A A. et al .
JPEG2000 compression of thin-section CT images of the lung: effect of compression
ratio on image quality.
Radiology.
2006;
240
869-877 (Epub 2006 Jul 25)
46
Savcenko V, Erickson B J, Persons K R. et al .
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
47
Savcenko V, Erickson B J, Persons K R. et al .
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
48
Slone R M, Foos D H, Whiting B R. et al .
Assessment of visually lossless irreversible image compression: comparison of three
methods by using an image-comparison workstation.
Radiology.
2000;
215
543-553
49
Slone R M, Muka E, Pilgram T K.
Irreversible JPEG compression of digital chest radiographs for primary interpretation:
assessment of visually lossless threshold.
Radiology.
2003;
228
425-429
50
Sung M M, Kim H J, Yoo S K. et al .
Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest
images.
J Digit Imaging.
2002;
15
78-83 (Epub 2002 Sep 26)
51
Suryanarayanan S, Karellas A, Vedantham S. et al .
A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail
characteristics.
J Digit Imaging.
2004;
17
64-70
52
Toney M O, Dominguez R, Dao H N. et al .
The effect of lossy discrete cosine transform compression on subtle bone fractures.
J Digit Imaging.
1997;
10
169-173
53
Tuinenburg J C, Koning G, Hekking E. et al .
American College of Cardiology/European Society of Cardiology international study
of angiographic data compression phase II. The effects of varying JPEG data compression
levels on the quantitative assessment of the degree of stenosis in digital coronary
angiography.
Eur Heart J.
2000;
21
679-686
54
Woo H S, Kim K J, Kim T J. et al .
JPEG 2000 compression of abdominal CT: difference in tolerance between thin- and thick-section
images.
Am J Roentgenol.
2007;
189
535-541
55
Yamamoto S, Johkoh T, Mihara N. et al .
Evaluation of compressed lung CT image quality using quantitative analysis.
Radiat Med.
2001;
19
321-329
56
Yin F F, Gao Q.
Oncolgic image compression using both waveletand maskin techniques.
Med Phys.
1997;
24
2038-2042
57
Zalis M E, Hahn P F, Arellano R S. et al .
CT colonography with teleradiology: effect of lossy wavelet compression on polyp detection
– initial observations.
Radiology.
2001;
220
387-392
58
Zheng L M, Sone S, Itani Y. et al .
Effect of CT digital image compression on detection of coronary artery calcification.
Acta Radiol.
2000;
41
116-121
Dr. Ingmar Kaden
Klinik für Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost
Halle
Merseburger Straße 165
06112 Halle
Germany
Phone: ++ 49/3 45/1 32 61 84
Fax: ++ 49/3 45/1 32 61 86
Email: Ingmar.Kaden@Bergmannstrost.com