Subscribe to RSS
DOI: 10.1055/s-0029-1217518
Solvent-Free Synthesis of Alkylthiazolium-Based Ionic Liquids and their Use as Catalysts in the Intramolecular Stetter Reaction
Publication History
Publication Date:
25 June 2009 (online)
Abstract
The first synthesis of alkylthiazolium-based ionic liquids under ‘green chemistry’ conditions is described. Thiazolium salts and triethylamine have been found to catalyze efficiently the intramolecular Stetter reaction, giving excellent yields within very short reaction times using solvent-free microwave activation conditions.
Key words
solvent-free reaction - microwave activation - ionic liquids - thiazolium salts - Stetter reaction
- For selective reviews, see:
-
1a
Welton T. Chem. Rev. 1999, 99: 2071 -
1b
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 -
1c
Hagiwara R.Ito Y. J. Fluorine Chem. 2000, 105: 221 -
1d
De Souza Dupont RF.Suarez PA. Chem. Rev. 2002, 102: 3667 -
1e
Rogers RD.Seddon KR. Ionic Liquids Industrial Applications to Green Chemistry ACS Symposium Series 818; Washington: 2001. -
1f
Wasserscheid P.Welton T. Ionic Liquids in Synthesis 2nd ed.: Wiley-VCH; Weinheim: 2008. -
1g
Rogers RD.Seddon KR. Ionic Liquids as Green Solvents. Progress and Prospects Oxford University Press; USA Washington: 2003. -
1h
Song CE. Chem. Commun. 2004, 1033 -
1i
Jain N.Kumar A.Chauhan S.Chauhan SMS. Tetrahedron 2005, 61: 1015 -
1j
Malhotra SV.Kumar V.Parmar VS. Curr. Org. Synth. 2007, 4: 370 -
1k
Durand J.Teuma E.Gómez M. Comptes Rendus Chimie 2007, 10: 152 -
1l
Parvulescu VI.Hardacre C. Chem. Rev. 2007, 107: 2615 -
1m
Plechkova NV.Seddon KR. Chem. Soc. Rev. 2008, 37: 123 -
1n
Toma S.Meciarová M.Šebesta R. Eur. J. Org. Chem. 2009, 3: 321 -
2a
Baldwin JE.Branz SE.Walker JA. J. Org. Chem. 1977, 42: 4142 -
2b
Yen SK.Koh LL.Hahn FE.Huynh HV.Hor ATS. Organometallics 2006, 25: 5105 -
2c
Davis JS.Forrester KJ. Tetrahedron Lett. 1999, 40: 1621 - For recent reviews on microwave chemistry, see:
-
3a
De la Hoz A.Diaz-Ortis A.Moreno A.Langa F. Eur. J. Org. Chem. 2000, 3659 -
3b
Alterman M.Hallberg A. J. Org. Chem. 2000, 65: 7984 -
3c
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199 -
3d
Lidström P.Tierney J.Wathey P.Westman J. Tetrahedron 2001, 57: 9225 -
3e
Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light CEM Publishing; Matthews NC: 2002. -
3f
Microwaves
in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2006. -
3g
Kappe CO.Stadler A. Microwaves in Organic and Medicinal Chemistry Wiley-VCH; Weinheim: 2005. -
3h
Ermolat’ev DS.Gimenez VN.Babaev EV.Van der Eycken E. J. Comb. Chem. 2006, 8: 659 -
4a
Loupy A.Petit A.Hamelin J.Texier-Boullet F.Jacquault P.Mathé P. Synthesis 1998, 1213 -
4b
Varma RS. Green Chem. 1999, 1: 43 -
4c
Tanaka K. Solvent-free Organic Synthesis Wiley-VCH; Weinheim: 2003. -
4d
Polshettiwar V.Varma RS. Acc. Chem. Res. 2008, 41: 629 -
5a
Varma RS.Namboodiri VV. Chem. Commun. 2001, 643 -
5b
Varma RS.Namboodiri VV. Pure Appl. Chem. 2001, 73: 1309 -
5c
Khadilkar BM.Rebeiro GL. Org. Proc. Res. Dev. 2002, 6: 826 -
5d
Law MC.Wong KY.Chan TH. Green Chem. 2002, 4: 328 -
5e
Varma RS.Namboodiri VV. Chem. Commun. 2002, 342 -
5f
Dubreuil JF.Famelart MH.Bazureau JP. Org. Proc. Res. Dev. 2002, 6: 374 -
5g
Varma RS.Namboodiri VV. Tetrahedron Lett. 2002, 43: 5381 -
5h
Deetlefs M.Seddon KS. Green Chem. 2003, 5: 181 - 6
Vo-Thanh G.Pégot B.Loupy A. Eur. J. Org. Chem. 2004, 1112 -
7a
Lévêque JM.Estager J.Draye M.Boffa L.Cravotto G.Bonrath W. Monatsh. Chem. 2007, 138: 1103 -
7b
Cravotto G.Calcio-Gaudino E.Boffa L.Lévêque JM.Estager J.Bonrath W. Molecules 2008, 13: 149 - 8
Suarez PAZ.Dullius JEL.Einloft S.Souza RF.Dupont J. Polyhedron 1996, 15: 1217 -
9a
Stetter H.Schreckenberg M. Angew. Chem. Int. Ed. Engl. 1973, 12: 81 -
9b
Stetter H. Angew. Chem. Int. Ed. Engl. 1976, 15: 639 -
9c
Stetter H.Kuhlmann H. Org. React. 1991, 40: 407 - For recent reports on the Stetter reaction, see:
-
10a
Raghavan S.Anuradha K. Tetrahedron Lett. 2002, 43: 5181 -
10b
Enders D.Kallfass U. Angew. Chem. Int. Ed. 2002, 41: 1743 -
10c
Nair V.Bindu S.Sreekuma V. Angew. Chem. Int. Ed. 2004, 43: 5130 -
10d
Cesar V.Bellemin-Laponnaz S.Gade LH. Chem. Soc. Rev. 2004, 33: 619 -
10e
Barrett AGM.Love AC.Tedeschi L. Org. Lett. 2004, 6: 3377 -
10f
Enders D.Belensiefer T. Acc. Chem. Res. 2004, 37: 534 -
10g
Mattson AE.Bharadwaj AR.Scheidt KA. J. Am. Chem. Soc. 2004, 126: 2314 -
10h
Anjaiah S.Chandrasekhar S.Grée R. Adv. Synth. Catal. 2004, 346: 1329 -
10i
Nakamura T.Hara O.Tamura T.Makino K.Hamada Y. Synlett 2005, 155 -
10j
Christmann M. Angew. Chem. Int. Ed. 2005, 44: 2632 -
10k
Zhou ZZ.Ji FQ.Cao M.Yang GF. Adv. Synth. Catal. 2006, 348: 1826 -
10l
Webber P.Krische MJ. Chemtracts: Org. Chem. 2007, 19: 262 -
10m
Read de Alaniz J.Kerr MS.Moore L.Rovis T.
J. Org. Chem. 2008, 73: 2033 - 11
Ciganek E. Synthesis 1995, 1311
References and Notes
General Procedure
for the Solvent-Free N-Alkylation of Thiazole under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-iodoalkane 2 (1.5 mmol) was irradiated
(CEM Discover reactor) at 150 ˚C for the appropriate
time (see Table
[¹]
).
The reaction mixture was brought to room temperature and washed
with Et2O (2 × 10 mL). The
crude product was dried under reduced pressure to afford a yellow
powder which did not need further purification.
1-Butylthiazolium Iodide
M.p.
101 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.99
(3 H, t, J = 7.5
Hz), 1.40-1.47 (2 H, m), 2.00-2.05 (2 H,
m), 4.83 (2 H, t, J = 7.5
Hz), 8.28 (1 H, d, J = 2.6
Hz), 8.34 (1 H, d, J = 3.4 Hz), 10.95 (1 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 13.9,
19.8, 32.9, 56.5, 127.5, 137.0, 159.6. IR (KBr): 3434, 3020, 2945,
1989, 1829, 1637, 1543, 1434, 1256, 1144, 952, 861, 639 cm-¹.
HRMS (EI): m/z [M+] calcd
for C7H12NS: 142.0685; found: 142.0690.
1-Octylthiazolium Iodide
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ =0.74
(3 H, t, J = 7.2
Hz), 1.21-1.26 (10 H, m), 1.91-1.96 (2 H,
m), 4.73 (2 H, t, J = 7.1
Hz), 8.4 (1 H, d, J = 3.4
Hz), 8.54 (1 H, d, J = 3.8
Hz), 10.69 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.6, 31.6, 56.3, 127.8, 136.9, 158.6. IR (NaCl): 3445,
3046, 2926, 2855, 1621, 1551, 1463, 1422, 1262, 1154, 907, 833,
749, 634 cm-¹. HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1313; found: 198.1316.
1-Decylthiazolium Iodide
M.p.
39 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.79
(3 H, t, J = 6.1
Hz), 1.17-1.28 (14 H, m), 1.96-1.97 (2 H,
m), 4.76 (2 H, t, J = 7.0
Hz), 8.42 (1 H, d, J = 1.8
Hz), 8.54 (1 H, d, J = 3.2
Hz), 10.72 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.7, 22.1, 25.6,
28.5, 28.7, 28.8, 28.9, 30.2, 31.3, 55.8, 127.5, 136.6, 158.2. IR
(KBr): 3435, 3078, 2922, 2852, 1555, 1471, 1370, 1264, 1150, 905,
812, 630 cm-¹. HRMS (EI): m/z [M+] calcd
for C13H24NS: 226.1625; found: 226.1629.
1-Dodecylthiazolium Iodide
M.p.
92 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.86
(3 H, t, J = 7.0
Hz), 1.27-1.34 (18 H, m), 1.99-2.04 (2 H,
m), 4.80 (2 H, t, J = 7.5
Hz), 8.41 (1 H, d, J = 3.4
Hz), 8.47 (1 H, d, J = 3.6
Hz), 10.79 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.6, 26.1,
28.9, 29.2, 29.3, 29.4, 29.5, 29.6, 30.6, 31.8, 56.3, 127.6, 136.6,
159.0. IR (KBr): 3096, 3079, 2916, 2850, 1556, 1472, 1258, 1149,
908, 811 cm-¹. HRMS (EI): m/z [M+] calcd
for C15H28NS: 254.1933; found: 254.1942.
General Procedure for Solvent-Free ‘One-Pot’ Preparation
of Alkylthiazolium 4 from 1 under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol),
1-iodooctane (360 mg, 1.5 mmol) and alkaline salt MY (1.5 mmol),
was irradiated (CEM Discover reactor) at 150 ˚C
for 1.3 h (see Table
[²]
).
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) were added. After filtration, the solvent was evaporated. The crude
product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil which did not need further purification.
1-Octylthiazolium Trifluoromethanesulfonate
¹H
NMR (250 MHz, CDCl3): δ = 0.84 (3 H,
t, J = 4.8
Hz), 1.23-1.32 (10 H, m), 1.96-2.02 (2 H,
m), 4.68 (2 H, t, J = 7.3
Hz), 8.29 (1 H, d, J = 3.8
Hz), 8.38 (1 H, d, J = 3.8 Hz),
10.42 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.5, 31.6, 56.1, 127.1, 137.0, 158.2. IR (NaCl): 3500,
3084, 2928, 2858, 1633, 1553, 1468, 1258, 1225, 1162, 1030, 914,
836, 757, 639 cm-¹. HRMS (EI):
m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1316.
1-Octylthiazolium Hexafluorophosphate
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.83
(3 H, t, J = 6.0
Hz), 1.22-1.31 (10 H, m), 1.98-2.02 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.36 (1 H, d, J = 2.6
Hz), 8.44 (1 H, d, J = 3.8
Hz), 10.54 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.9, 22.3, 25.8,
28.7, 28.8, 30.5, 31.4, 56.0, 127.6, 136.7, 158.3. IR (NaCl): 3440,
3084, 2929, 2856, 1602, 1553, 1469, 1174, 1012, 905, 750 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1309; found: 198.1316.
1-Octylthiazolium Tetrafluoroborate
¹H
NMR (300 MHz, CDCl3): δ = 0.83 (3 H,
t, J = 7.1
Hz), 1.28-1.32 (10 H, m), 1.99-2.03 (2 H,
m), 4.79 (2 H, t, J = 7.5
Hz), 8.42 (1 H, d, J = 3.4
Hz), 8.52 (1 H, d, J = 3.4 Hz),
10.57 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.3, 22.8, 26.4,
29.1, 29.2, 30.8, 31.9, 56.6, 127.2, 137.2, 158.6. IR (NaCl): 3445,
3094, 2929, 2858, 1607, 1553, 1469, 1352, 1194, 1058, 915, 740 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1309.
Solvent-Free Microwave-Promoted ‘Two-Step,
One-Pot Sequence’ Preparation of Octylthiazolium Bis(trifluoromethanesulfonyl)imide: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-bromooctane (360 mg, 1.5 mmol) was irradiated (CEM Discover reactor)
at 150 ˚C for 1.3 h. Lithium bis(tstrifluoromethanesulfonyl)imide
(373 mg, 1.5 mmol) was added and the resulting mixture was then placed
under MW irradiation for an additional period of 30 min at 100 ˚C.
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) was added. After filtration, the solvent was evaporated. The
crude product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil (356 mg, 75%) which did not need further purification.
1-Octylthiazolium Bis(trifluoromethanesulfonyl)imide
M.p.
30 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.84
(3 H, t, J = 6.6
Hz), 1.25-1.35 (10 H, m), 1.97-2.05 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.35 (1 H, d, J = 3.6
Hz), 8.42 (1 H, d, J = 3.6
Hz), 10.52 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.4, 21.9, 25.5,
28.2, 28.3, 30.1, 31.0, 55.7, 127.2, 136.4, 158.1. IR (NaCl): 3436,
3064, 2926, 2855, 1622, 1553, 1463, 1267, 1154, 906, 834 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1314; found: 198.1316.
Representative Procedure for Microwave-Assisted Intramolecular
Stetter Reaction: A mixture of methyl 4-(2-formylphenoxy)but-2-enoate 6 (Z = H; 0.11
g, 0.5 mmol), Et3N (51 mg, 0.5 mmol) and octylthiazolium
iodide (25 mg, 15% mol) was irradiated at 100 ˚C
for 20 minutes. The reaction was quenched with 0.1 N HCl and extracted with
CH2Cl2. The organic phase was washed with
H2O, dried over MgSO4, filtered and concentrated
in vacuum to afford a pale-orange oil 7 (107
mg, 97% yield).
Methyl 2-(3,4-Dihydro-4-oxo-2
H
-chromen-3-yl)acetate
¹H
NMR (250 MHz, CDCl3): δ = 2.42 (1 H,
dd, J = 8.2, 16.8 Hz), 2.92 (1 H, dd, J = 5.1, 17.1
Hz), 3.28-3.36 (1 H, m), 3.71 (3 H, s), 4. 28 (1 H, t, J = 11.7 Hz),
4.58 (1 H, dd, J = 5.4,
11.1 Hz), 6.99 (1 H, dd, J = 8.8,
15.5 Hz), 7.46 (1 H, t, J = 8.2
Hz), 7.86 (1 H, d, J = 7.9
Hz). ¹³C NMR (90 MHz, CDCl3): δ = 29.9,
42.4, 51.9, 70.1, 117.7, 121.4, 135.9, 161.4, 171.7, 192.4. IR (NaCl):
3583, 2953, 1738, 1694, 1606, 1580, 1480, 1324, 1301, 1215, 1014,
870, 760 cm-¹. HRMS (EI): m/z [M + Na+] calcd
for C12H12O4Na: 243.0627; found:
243.0633.