Subscribe to RSS
DOI: 10.1055/s-0029-1218391
A Concise Route to l-Azidoamino Acids: l-Azidoalanine, l-Azidohomoalanine and l-Azidonorvaline
Publication History
Publication Date:
27 November 2009 (online)

Abstract
A simple and highly efficient synthetic route to three homologous azidoamino acids, starting from inexpensive, commercially available, protected natural amino acids is reported. The products can be used to introduce bioorthogonal handles into proteins.
Key words
amino acids - azides - bioorganic chemistry - bioorthogonal chemistry - non-canonical
-
1a
Ryu Y.Schultz PG. Nature Methods 2006, 3: 263 -
1b
Wang Q.Parrish AR.Wang L. Chem. Biol. 2009, 16: 323 - 2
Connor RE.Piatkov K.Varshavsky A.Tirrell DA. ChemBioChem 2008, 9: 366 - 3
Van Hest JCM.Kiick KL.Tirrell DA. J. Am. Chem. Soc. 2000, 122: 1282 -
4a
Kiick KL.Saxon E.Tirrell DA.Bertozzi CR. Proc. Natl Acad. Sci. U.S.A. 2002, 99: 19 -
4b
Link AJ.Tirrell DA. J. Am. Chem. Soc. 2003, 125: 11164 - 5
Datta D.Wang P.Carrico IS.Mayo SL.Tirrell DA. J. Am. Chem. Soc. 2002, 124: 5652 -
6a
Best MD. Biochemistry 2009, 48: 6571 -
6b
Baskin JM.Bertozzi CR. QSAR Comb. Sci. 2007, 26: 1211 -
7a
Oh K.-I.Lee J.-H.Joo C.Han H.Cho M. J. Phys. Chem. B 2008, 112: 10352 -
7b
Ye S.Huber T.Vogel R.Sakmar TP. Nature Chem. Biol. 2009, 5: 397 -
8a
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596 -
8b
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 -
8c
Meldal M.Tornoe CW. Chem. Rev. 2008, 108: 2952 -
9a
Codelli JA.Baskin JM.Agard NJ.Bertozzi CR. J. Am. Chem. Soc. 2008, 130: 11486 -
9b
Baskin JM.Prescher JA.Laughlin ST.Agard NJ.Chang PV.Miller IA.Lo A.Codelli JA.Bertozzi CR. Proc. Natl Acad. Sci. U.S.A. 2007, 104: 16793 -
9c
Sletten EM.Bertozzi CR. Org. Lett. 2008, 10: 3097 - 10
Agard NJ.Baskin JM.Prescher JA.Lo A.Bertozzi CR. ACS Chem. Biol. 2006, 1: 644 - 11
Link AJ.Vink MKS.Tirrell DA. J. Am. Chem. Soc. 2004, 126: 10598 -
12a
Panda G.Rao NV. Synlett 2004, 714 -
12b
Maier THP. Nature Biotechnol. 2003, 21: 422 -
12c
Wie L.Lubell WD. Can. J. Chem. 2001, 79: 94 -
12d
Davoli P.Forni A.Moretti I.Prati F. Tetrahedron: Asymmetry 1995, 6: 2011 -
12e
Arnold LD.May RG.Vederas JC. J. Am. Chem. Soc. 1988, 110: 2237 -
12f
Mangold JB.Lavelle JM. Chem.-Biol. Interact. 1986, 60: 183 -
12g
Owais WM.Ronald RC.Kleinhofs A.Nilan RA. Mut. Res. Lett. 1986, 175: 121 -
12h
Golding BT.Howes C. J. Chem. Res. 1984, 1 - 13
Link AJ.Vink MKS.Tirrell DA. Nature Protoc. 2007, 2: 1884 - 14
Link AJ.Vink MKS.Tirrell DA. Nature Protoc. 2007, 2: 1879 - 15
Mangold JB.Mischke MR.Lavelle JM. Mutat. Res. 1989, 216: 27 - 16
Oppolzer W.Moretti R.Zhou C. Helv. Chim. Acta 1994, 77: 2363 - 17
McLaughlin M.Mohreb RM.Rapoport H. J. Org. Chem. 2003, 68: 50 - 18
Broadrup RL.Wang B.Malachowski WP. Tetrahedron 2005, 61: 10277 - 21
Felix AM. J. Org. Chem. 1974, 39: 1427
References and Notes
To a solution of alcohol 5 (269 mg, 0.87 mmol,
1.0 equiv)
in CH2Cl2 (5 mL)
at 0 ˚C, was added Et3N (288 µL, 2.09 mmol,
2.4 equiv) followed by dropwise addition of methylsulfonyl
chloride (81 µL, 1.04 mmol, 1.2 equiv).
The ice-bath was removed and the solution was stirred at r.t. for 15 min.
Sat. NaHCO3 (5 mL) was added and the layers
were separated. The organic layer was washed with brine (2 × 5 mL)
and the combined aqueous layer was back-extracted with CH2Cl2 (2 × 10 mL).
The combined organic layer was dried over MgSO4, the
solids filtered off and the solvent removed in vacuo. The crude
product was purified by column chromatography (silica; PE-EtOAc,
7:3) to give a colourless solid (312 mg, 0.81 mmol,
93%); mp 61-63 C (CHCl3); [α]D
²8 -37.1
(c 0.11, CHCl3); IR: 3009,
1711, 1500, 1364, 1175 cm-¹; ¹H
NMR (400 MHz, CDCl3): δ = 1.39 (s, 9 H, tBu), 2.08 (m, 1 H, Hβ
1),
2.29 (m, 1 H, Hβ
2), 2.92
(s, 3 H, SO2CH3), 4.24 (m, 2 H,
Hγ), 4.43 (m, 1 H, Hα),
5.15 (s, 2 H, CH
2Ph),
5.26 (bd, J = 7.0 Hz, 1 H,
NH), 7.33 (m, 5 H, Ar); ¹³C
NMR (100 MHz, CDCl3): δ = 28.2 [C(CH3)3],
31.8 (Cβ), 37.1 (SO2CH3),
50.4 (Cα), 65.8 (Cγ), 67.5
(CH2Ph), 80.3 [C(CH3)3],
128.4, 128.5, 128.7, 135.0 (Ar), 155.3 (t
-BuOCONHR),
177.5 (CO2Bn); MS (ESI+): m/z [M + Na]+ calcd
for C17H25NNaO7S: 410.1244; found:
410.1225.
To a solution of mesylate 6 (222 mg, 0.56 mmol, 1.0 equiv) in anhydrous DMF (2 mL), was added NaN3 (54 mg, 0.84 mmol, 1.5 equiv) in one portion. The suspension was stirred at 40 ˚C for 4 h, then the solvent was removed in vacuo and the crude product was purified by column chromatography (silica; PE-EtOAc, 4:1). The azide 7 was obtained as a colourless oil (171 mg, 0.51 mmol, 92%); [α]D ²8 +2.8 (c 0.71, CHCl3); IR: 3434, 2981, 2104, 1712, 1499, 1160 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 1.41 (s, 9 H, tBu), 1.89 (m, 1 H, Hβ 1), 2.08 (m, 1 H, Hβ 2), 3.34 (t, J = 6.7 Hz, 2 H, Hγ), 4.41 (m, 1 H, Hα), 5.13 (d, J = 12.3 Hz, 1 H, CH 2Ph), 5.18 (d, J = 12.3 Hz, 1 H, CH 2Ph), 5.19 (br s, 1 H, NH), 7.34 (m, 5 H, Ar); ¹³C NMR (100 MHz, CDCl3): δ = 28.2 [C(CH3)3], 31.7 (Cβ), 47.6 (Cγ), 51.5 (Cα), 67.3 (CH2Ph), 80.2 [C(CH3)3], 128.3, 128.5, 128.6, 135.1 (Ar), 155.2 (tBuOCONHR), 171.8 (CO2Bn); MS (ESI+): m/z [M + Na]+ calcd for C16H22N4NaO4: 357.1533; found: 357.1522.
22To a solution of protected amino acid 7 (33 mg, 0.1 mmol, 1 equiv)
dissolved in anhydrous CH2Cl2 (2.5 mL)
at -10 ˚C under an N2 atmosphere,
boron tribromide solution (1 M in CH2Cl2,
0.5 mL, 0.5 mmol, 5 equiv) was added
dropwise over 5 min. The resulting solution was stirred for 1 h
at
-10 ˚C and for 2 h
at r.t. The reaction was quenched by careful addition of H2O
(2.5 mL), and then the layers were separated. The organic
phase was washed with H2O (3 × 5 mL)
and the combined aqueous layer was evaporated to dryness. The crude
product was re-dissolved in a minimum amount of ethanol and the
pure product 2 was obtained by precipitation
at 4 ˚C as a colourless crystalline solid (14 mg, 0.1 mmol,
quantitative yield).