RSS-Feed abonnieren
DOI: 10.1055/s-0029-1218523
Domino Multicomponent Michael-Michael-Aldol Reactions under Phase-Transfer Catalysis: Diastereoselective Synthesis of Pentasubstituted Cyclohexanes
Publikationsverlauf
Publikationsdatum:
20. November 2009 (online)
Abstract
A simple, efficient, and environmental friendly domino multicomponent reaction to construct new cyclohexane derivatives with five new stereocenters, one of them quaternary, under phase-transfer catalysis is reported. This novel one-pot reaction allows the transformation of very simple starting materials into pentasubstituted cyclohexane derivatives bearing hydroxy, nitro, and ketone moieties and involving the formation of three new C-C bonds. All compounds have been formed in a completely diastereoselective way and have been isolated in high yields.
Key words
domino reaction - multicomponent reaction - phase-transfer catalysis - diastereoselectivity
- 1
Enders D.Huttl MRM.Grondal C.Raabe G. Nature (London) 2006, 441: 861 - 2
Ho TL. Carbocycle Construction in Terpene Synthesis Wiley-VCH; Weinheim: 1988. - For examples, see:
-
3a
Ramachary DB.Reddy YV.Prakash BV. Org. Biomol. Chem. 2008, 6: 719 -
3b
Ishikawa H.Suzuki T.Hayashi Y. Angew. Chem. Int. Ed. 2009, 48: 1304 - For reviews of this concept, see:
-
4a
Tietze LF. Chem. Rev. 1996, 96: 115 -
4b
Nicolaou KC.Montagnon T.Snyder SA. Chem. Commun. 2003, 551 -
4c
Zhe J.Bienaymé H. Multicomponent Reactions 1st ed.: Wiley-VCH; Weinheim: 2005. -
4d
Ramón DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 -
4e
Nicolaou KC.Edmonds DJ.Bulger PG. Angew. Chem. Int. Ed. 2006, 45: 7134 -
4f
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. -
4g
Guo HC.Ma JA. Angew. Chem. Int. Ed. 2006, 45: 354 -
4h
Enders D.Grondal C.Huttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 -
4i
Tejedor D.García-Tellado F. Chem. Soc. Rev. 2007, 36: 484 -
4j
Guillena G.Ramón DJ.Yus M. Tetrahedron: Asymmetry 2007, 18: 693 -
4k
Padwa A.Bur SK. Tetrahedron 2007, 63: 5341 -
4l
Yua XH.Wang W. Org. Biomol. Chem. 2008, 6: 2037 - 5
Hashimoto T.Maruoka K. Chem. Rev. 2007, 107: 5656 - 6
Trost BM. Science 1991, 254: 1471 -
7a
Hong BC.Wu MF.Tseng HC.Liao JH. Org. Lett. 2006, 8: 2217 -
7b
Enders D.Narine AA.Benninghaus TR.Raabe G. Synlett 2007, 1667 -
7c
Sridharan V.Menendez JC. Org. Lett. 2008, 10: 4303 -
7d
Cabrera S.Aleman J.Bolze P.Bertelsen S.Jørgensen KA. Angew. Chem. Int. Ed. 2008, 47: 121 -
7e
Hong BC.Nimje RY.Sadani AA.Liao JH. Org. Lett. 2008, 10: 2345 - 8
Carlone A.Cabrera S.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1101 -
9a
Hayashi Y.Okano T.Aratake S.Hazelard D. Angew. Chem. Int. Ed. 2007, 46: 4922 -
9b
Penon O.Carlone A.Mazzanti A.Locatelli M.Sambri L.Bartoli G.Melchiorre P. Chem. Eur. J. 2008, 14: 4788 -
9c
Tan B.Chua PJ.Li YX.Zhong GF. Org. Lett. 2008, 10: 2437 -
9d
Enders D.Huttl MRM.Raabe G.Bats JW. Adv. Synth.Catal. 2008, 350: 267 -
9e
Zhao GL.Dziedzic P.Ullah F.Eriksson L.Cordova A. Tetrahedron Lett. 2009, 50: 3458 -
10a
Reyes E.Jiang H.Milelli A.Elsner P.Hazell RG.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 9202 -
10b
Ruano JLG.Marcos V.Suanzes JA.Marzo L.Aleman J. Chem. Eur. J. 2009, 15: 6576 -
11a
Quaternary Stereocenters. Challenges and Solutions
for Organic Synthesis
Christoffers J.Baro A. Wiley-VCH; Weinheim: 2005. -
11b
Cozzi PG.Hilgraf R.Zimmermann N. Eur. J. Org. Chem. 2007, 5969 -
12a Synthesis
of 1a,c,d:
Pinto DCGA.Silva AMS.Levai A.Cavaleiro JAS.Patonay T.Elguero J. Eur. J. Org. Chem. 2000, 2593 -
12b Synthesis of 1b:
Silva AMS.Pinto DCGA.Tavares HR.Cavaleiro JAS.Jimeno ML.Elguero J. Eur. J. Org. Chem. 1998, 2031 -
12c Synthesis of 1h:
Santos CMM.Silva AMS.Cavaleiro JAS.Levai A.Patonay T. Eur. J. Org. Chem. 2007, 2877 - 17
Park DY.Gowrisankar S.Kim N. Tetrahedron Lett. 2006, 47: 6641
References and Notes
General Procedure
for the Syntheses of 1e-g
An aqueous solution
of NaOH (60%, 25 mL) was slowly added to a methanolic solution
(30 mL) of appropiate acetophenone (5.0 mmol). After cooling the
solution to r.t., cinnamaldehyde (792 mg, 6.0 mmol) was added. The mixture
was stirred at r.t. for 20 h, and then it was poured into H2O
(100 mL), ice (100 g), and HCl (pH adjusted to ca. 2). The solid
obtained was removed by filtration, dissolved in CHCl3 (50
mL), and washed with an aq solution of NaHCO3 (5%,
30 mL). The organic layer was collected, dried over anhyd Na2SO4,
and the solution evaporated to dryness. The residue was purified
by silica gel column chromatography using CH2Cl2 as
eluent. Finally, the isolated compounds were recrystallized from
EtOH.
Selected Data for 1g
Yellow
solid (1.13 g, 84% yield); 143-144 ˚C. ¹H
NMR (300.13 MHz, CDCl3, 20 ˚C): δ = 7.04-7.01
(m, 2 H, H-4, H-5), 7.05 (d, ³
J
trans
= 15.0
Hz, 1 H, H-2), 7.41-7.30 (m, 3 H, H-3′′,5′′,
H-4′′), 7.52-7.44 (m, 4 H, H-2′′,6′′,
H-3′,5′), 7.65-7.57 (m, 1 H, H-3), 7.92
(AA′BB ′, ³
J
AB = 8.6,
Hz, 4
J
AA
′ = 2.2
Hz, 5
J
AB
′ = 1.9
Hz, 2 H, H-2′,6′) ppm. ¹³C
NMR (125.77 MHz, CDCl3, 20 ˚C): δ = 124.8
(C-2), 126.7 (C-5), 127.4 (C-2′′,6′′),
128.9 (C-3′,5′, C-3′′,5′′),
129.4 (C-4′′), 129.8 (C-2′,6′),
136.0 (C-1′′), 136.5 (C-1′), 139.1 (C-4′), 142.4
(C-4), 145.4 (C-3), 189.1 (C-1) ppm. Anal. Calcd: C, 75.98; H, 4.88.
Found: C, 75.92; H, 4.86.
General Procedure
for the Synthesis of 2a-g
To a stirred 0.2
M solution of the appropriate 1,5-diaryl-penta-2,4-dien-1-ones 1 (0.085 mmol) in MeCN (0.43 mL) was added
TBAB (9.2 mg, 0.028 mmol), Cs2CO3 (27.7 mg, 0.085),
and MeNO2 (2.3 µL, 0.043 mmol). The mixture
was stirred at r.t. for 20 h, quenched with H2O (5 mL),
and extracted with CH2Cl2 (3 × 5
mL). The combined organic extracts were dried over MgSO4.
Evaporation of the solvent under reduced pressure afforded an oil,
which was purified by column chromatography (hexane-EtOAc = 9:1
as eluent) and crystallized (hexane-EtOAc) to afford the
desired products 2a-g as single diastereomers.
Selected Data for (
E
,
E
,1
R
*,2
S
*,3
S
*,4
S
*,5
S
*)-2-Benzoyl-1-hydroxy-4-nitro-1-phenyl-3,5-distyrylcyclohexane
(2a)
White solid (17.7 mg, 79% yield; Figure
[³]
); 227-229 ˚C. ¹H NMR
(500.13 MHz, CDCl3, 20 ˚C): δ = 2.00
(ddd, J = 14.4, 12.2,
2.6 Hz, 1 H, H-6B), 2.20 (dd, J = 14.4,
4.1 Hz, 1 H, H-6A), 3.72-3.84 (m, 2 H, H-3, H-5), 4.14
(d, J = 11.6
Hz, 1 H, H-2), 4.64 (t, J = 11.1
Hz, 1 H, H-4), 5.34 (d, J = 2.6
Hz, 1 H, OH), 5.71 (dd, J = 15.7,
9.8 Hz, 1 H, H-α′), 6.03 (dd, J = 15.7,
8.8 Hz, 1 H, H-α′′), 6.36 (d, J = 15.7 Hz,
1 H, H-β′), 6.56 (d, J = 15.7
Hz, 1 H, H-β′′), 6.85-6.87 (m,
2 H, H-2′′′,6′′′),
7.10-7.11 (m, 4 H, H-3′,5′, H-3′′′,5′′′),
7.20-7.31 (m, 9 H, H-2′′′′,6′′′′,
H-3′′,5′′, H-3′′′′,5′′′′,
H-4′, H-4′′′, H-4′′′′),
7.42 (t, J = 8.3
Hz, 1 H, H-4′′), 7.45 (dd, J = 8.3,
1.0 Hz, 2 H, H-2′,6′), 7.56 (dd, J = 8.3,
1.2 Hz, 2 H, H-2′′,6′′) ppm. ¹³C
NMR (125.77 MHz, CDCl3, 20 ˚C): δ = 40.9
(C-5), 44.0 (C-6), 45.6 (C-3), 53.2 (C-2), 74.3 (C-1), 94.1 (C-4), 123.9
(C-α′′), 124.5 (C-2′,6′),
126.4 (CAr), 126.5 (C-2′′′,6′′′), 126.6
(C-α′), 127.4 (CAr), 127.8 (CAr),
127.9 (CAr), 128.1 (C-2′′,6′′),
128.2 (CAr), 128.4 (CAr), 128.5 (CAr),
128.6 (CAr), 133.5 (C-β′′),
133.6 (C-4′′), 135.5 (C-β′),
135.8 (C-1′′′), 136.4 (C-1′′′′),
137.8 (C-1′′), 144.7 (C-1′), 205.0 (C=O) ppm.
HRMS (ESI+): m/z calcd
for [C35H31NO4 + Na]+: 552.2145;
found: 552.2147. Anal. Calcd: C, 79.37; H, 5.90; N, 2.64. Found:
C, 78.97; H, 5.91; N, 2.73.
Crystal Data
C35H31NO4, M = 529.61,
monoclinic, space group P21/n, Z = 4, a = 5.6904
(2) Å, b = 15.8717
(5) Å, c = 31.4292
(9) Å, β = 91.793 (2)˚, V = 2837.18
(16) ų, colorless needles with crystal
size of 0.20 × 0.08 × 0.06 mm³.
Of a total of 34281 reflections collected, 7584 were independent (R
int = 0.0843).
Final R1 = 0.0588 [I > 2σ(I)] and wR2 = 0.1497
(all data). CCDC-743412 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
Nonhydrogen atoms are represented as thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radii. For simplicity only one position of the disordered phenyl group is represented. Hydrogen-bonding geometry details of the intramolecular O-H˙˙˙O interaction (dashed green line): dO ˙˙˙ O = 2.6726 (19) Å and <(DHA) = 141.3˚.