References and Notes
-
1a
Aziridines and Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
-
1b
Jacobsen EN.
Comprehensive Asymmetric
Catalysis
Vol. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.607
-
1c
Pearson WH.
Lian BW.
Bergmeier SC. In Comprehensive
Heterocyclic Chemistry II
Vol. 1A:
Padwa A.
Pergamon;
Oxford:
1996.
p.1
-
1d
Rai KML.
Hassner A. In Comprehensive Heterocyclic Chemistry II
Vol.
1A:
Padwa A.
Pergamon;
Oxford:
1996.
p.6196
- 2 For useful biological activities
of aziridines, see: Yadav
LD.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron Lett.
2008,
49:
687 ; and references therein
-
For the synthesis of oseltamivir,
the anti-influenza neuraminidase inhibitor, using an aziridine intermediate, see:
-
3a
Nie L.-D. Shi X.-X.
Ko KH. Lu W.-D.
J. Org. Chem.
2009,
74:
3970
-
3b
Yamatsugu K. Yin L.
Kamijo S.
Kimura Y. Kanai M.
Shibasaki M.
Angew. Chem. Int. Ed.
2009,
48:
1070
-
3c
Satoh N.
Akiba T.
Yokoshima S.
Fukuyama T.
Tetrahedron
2009,
65:
3239
-
3d
Trost BM.
Zhang T.
Angew. Chem.
Int. Ed.
2008,
47:
3759
-
3e
Shibasaki M.
Kanai M.
Eur. J. Org. Chem.
2008,
1839
-
3f
Yeung Y.-Y.
Hong S.
Corey EJ.
J.
Am. Chem. Soc.
2006,
128:
6310
-
3g
Fukuta Y.
Mita T.
Fukuda N.
Kanai M.
Shibasaki M.
J. Am.
Chem. Soc.
2006,
128:
6312
-
For azinomycins, see:
-
4a
Hodgkinson TJ.
Shipman M.
Tetrahedron
2001,
57:
4467
-
4b
Coleman RS.
Kong
JS.
Richardson TE.
J. Am. Chem. Soc.
1999,
121:
9088
-
4c
Coleman RS.
Li J.
Navarro A.
Angew.
Chem. Int. Ed.
2001,
40:
1736
- 5
Remers WA. In The Chemistry of
Antitumor Antibiotics
Vol. 1:
Wiley-Interscience;
New
York:
1979.
p.242
- 5b
Kasai M.
Kono M.
Synlett
1992,
778
-
6a
Taylor AM.
Schreiber SL.
Tetrahedron Lett.
2009,
50:
3230
-
6b
Chan JWW.
Ton TMU.
Zhang Z.
Xu Y.
Chan PWH.
Tetrahedron Lett.
2009,
50:
161
-
6c
Singh GS.
D’hooghe M.
De
Kimpe N.
Chem. Rev.
2007,
107:
2080
-
6d
Muller P.
Fruit C.
Chem. Rev.
2003,
2905
-
6e
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
-
6f
Ibuka I.
Chem.
Soc. Rev.
1998,
27:
145
-
6g
Osborn
HMI.
Sweeney JB.
Tetrahedron:
Asymmetry
1997,
8:
1693
-
6h
Li A.-H.
Dai L.-X.
Aggarwal VK.
Chem.
Rev.
1997,
97:
2341
-
6i
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
599
-
7a
Minakata S.
Morino Y.
Oderaotoshi Y.
Komatsu M.
Chem.
Commun.
2007,
3337
-
7b
D’hooghe M.
Boelens M.
Piqueur J.
Kimpe N.
Chem. Commun.
2007,
1927
-
8a
Fioravanti S.
Morea S.
Morreale A.
Pellacani L.
Tardella PA.
Tetrahedron
2009,
65:
484
-
8b
Chigboh K.
Morton D.
Nadin A.
Stockman RA.
Tetrahedron Lett.
2008,
49:
4768
-
8c
Duan P.-W.
Chiu C.-C.
Lee W.-D.
Pan LS.
Venkatesham U.
Tzeng Z.-H.
Chen K.
Tetrahedron:
Asymmetry
2008,
19:
682
-
8d
Fernandez I.
Valdivia V.
Gori B.
Alcudia F.
Alvarez E.
Khiar N.
Org. Lett.
2005,
7:
1307
-
8e
Ulukanli S.
Karabuga S.
Celik A.
Kazaz C.
Tetrahedron Lett.
2005,
46:
197
-
8f
Chenna PHD.
Peillard FR.
Dauban P.
Dodd RH.
Org.
Lett.
2004,
6:
4503
-
8g
Cavallo AS.
Roje M.
Welter R.
Sinjic V.
J. Org. Chem.
2004,
69:
1409
-
8h
Redlich M.
Hossain MM.
Tetrahedron Lett.
2004,
45:
8987
-
8i
Calhorda MJ.
Vaz PD.
Chemtracts:
Inorg. Chem.
2004,
17:
396
-
8j
Barros MT.
Maycock CD.
Ventura MR.
Tetrahedron Lett.
2002,
43:
4329
-
8k
Gillespie KM.
Sanders CJ.
Shaughnessy PO.
Westmoreland I.
Thickitt CP.
Scott P.
J.
Org. Chem.
2002,
67:
3450
-
8l
Nishimura M.
Minakata S.
Takahashi T.
Oderaotoshi Y.
Komatsu M.
J.
Org. Chem.
2002,
67:
2101
-
8m
Aggarwal VK.
Alonso E.
Ferrara M.
Spey
SE.
J.
Org. Chem.
2002,
67:
2335
-
8n
Wei H.-X.
Kim
SH.
Li G.
Tetrahedron
2001,
57:
8401
- 9
Pereira MM.
Santos PPO.
Reis LV.
Lobo AM.
Prabhakar S.
J. Chem. Soc., Chem. Commun.
1993,
38
-
10a
Antunes MM.
Bonifácio VDB.
Nascimento CC.
Lobo AM.
Branco PS.
Prabhakar S.
Tetrahedron
2007,
63:
7009
-
10b
Antunes AMM.
Marto SJ.
Branco PS.
Prabhakar S.
Lobo AM.
Chem. Commun.
2001,
405
-
11a
Aires-de-Sousa J.
Prabhakar S.
Lobo AM.
Rosa AM.
Gomes MJS.
Corvo MC.
Williams DJ.
White AJP.
Tetrahedron: Asymmetry
2002,
12:
3349
-
11b
Aires-de-Sousa J.
Lobo AM.
Prabhakar S.
Tetrahedron Lett.
1996,
37:
3183
- 12
Murugan E.
Siva A.
Synthesis
2005,
2022
-
13a
Davis FA.
Wu Y.
Yan H.
McCoull W.
Prasad
KR.
J. Org. Chem.
2003,
68:
2410
-
13b
Davis FA.
Zhou P.
Reddy GV.
J. Org. Chem.
1994,
59:
3243
- 14 The lithium salt of (S
S)-(+)-1 was prepared as in: Wenschuh V.
Fritzsche B.
J. Prakt.
Chem.
1970,
312:
129 ;
its configuration stability in the chiral sulfur was ascertained
by recovering (S
S)-(+)-1 with the same specific rotation of +85.6
(c 0.95, CH3Cl) from the salt
-
All α-bromo(iodo)olefins 2 were obtained by dihalogenation of the
double bond followed by base-catalyzed elimination of the β-halogen
while reforming the olefin:
-
16a Compound 2a: Kowalski CJ.
Weber AE.
Fields KW.
J. Org. Chem.
1982,
47:
5088
-
16b Compounds 2b,c: Bordwell
FG.
Wellman KM.
J.
Org. Chem.
1963,
28:
2544
-
16c Compound 2d: Smith AB.
Branca SJ.
Guaciaro
MA.
Wovkulich PM.
Korn A.
Org.
Synth., Coll. Vol. VII
1990,
271
-
16d Compound 2e: Johnson CR.
Adams
JP.
Braun MP.
Senanayake CBW.
Wovkulich
PM.
Uskokovic MR.
Tetrahedron Lett.
1992,
7:
917
-
16e Compound 2f: Wakui T.
Otsuji Y.
Imoto E.
Bull. Chem. Soc. Jpn.
1974,
2267
-
16f Compound 2g: Amice P.
Blanco L.
Conia JM.
Synthesis
1976,
196
-
16g Compound 2h: Crossland I.
Bock K.
Norrestam R.
Acta Chem. Scand., Ser. B
1985,
39:
7
-
16h
Nield CH.
J. Am. Chem. Soc.
1945,
67:
1145
-
16i Compound 2i: Carlier P.
Gelas-Mialhe Y.
Vessiere R.
Can. J. Chem.
1977,
55:
3190
- 18 For stabilization involving lithium
chelation in an eight-membered ring, see: Davis FA.
Reddy RT.
Reddy
RE.
J. Org. Chem.
1992,
57:
6387
- 19
Molander GA.
Stengel PJ.
Tetrahedron
1997,
53:
8887
- 20
Parker D.
Chem.
Rev.
1991,
91:
1441
15 This compound is commercially available
from Sigma-Aldrich Co (http://www.sigmaaldrich.com).
17 CCDC 741870 contains the crystallographic
data which can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif,
by emailing data_request@ccdc.cam. ac.uk, or by
contacting CCDC, UK; fax: +44 (1223)336033.
21 Full coordinates and other information
about the calculations can be found via the following digital repository entries:
10042/to-2308, 10042/to-23010, 10042/to-2311, 10042/to-2312,
10042/to-2314 and 10042/to-2315, resolved as e.g.
http://dx.doi.org/10042/to-2308.
An interactive version of this figure can be viewed via the HTML
version of this article.
22
Typical Experimental
Procedure for Aziridination
To a dry THF solution
of 2-bromocyclohex-2-en-1-one (2a, 0.286
mmol), under nitrogen atmosphere and protected from light at -78 ˚C,
was added the lithium salt of chiral sulfinamide 1 (0.858
mmol) and the reaction allowed to reach r.t. After 30 min the solvent
was removed under reduced pressure and the residue dissolved in
EtOAc, washed with aq NH4Cl (10%), and after
drying and solvent removal, the remaining residue was purified via
silica gel PTLC (EtOAc-n-hexane,
1:1) to afford a mixture of the title aziridines 3Aa (major)/3Ba (minor); yield 62%. Separation of
both diastereomers was achieved by 2 × PTLC
of the mixture.
Compound 3Aa(major):
mp 70-71 ˚C (EtOAc-n-hexane); [α]D
²³ +64.6
(c 0.99, CHCl3).
Compound 3Ba(minor): mp 90-91 ˚C
(EtOAc-n-hexane); [α]D
²³ +89.4
(c 1.44, CHCl3). ¹H
NMR (400 MHz, CDCl3; 3Aa/3Ba = 77:23): δ = 7.60
(2 H, d, J = 8.2
Hz, minor), 7.55 (2 H, d, J = 8.2
Hz, major), 3.23 (1 H, d, J = 6.3
Hz, minor), 3.13 (1 H, d, J = 6.3
Hz, major), 3.06 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.3
Hz, minor). MS (CI): m/z (%) = 249
(100) [M+]. Anal. Calcd for
C13H15NO2S: C, 62.62; H, 6.06;
N, 5.62. Found: C, 62.31; H, 6.34; N, 5.74.
Compound 3b: oil. ¹H NMR (400
MHz, CDCl3): δ = 7.59 (2 H, d, J = 8.1 Hz,
minor), 7.55 (2 H, d, J = 8.1
Hz, major), 3.08 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.4
Hz, minor), 2.85 (1 H, d, J = 6.4
Hz, minor), 2.77 (1 H, d, J = 6.3 Hz,
major). HRMS: m/z calcd for
C15H19NO2S: 277.11365; found: 277.11344.
Anal. Calcd for C15H19NO2S: C,
64.95; H, 6.90; N, 5.05. Found: C, 65.27; H, 7.16; N, 4.95.
Compound 3c: mp 64-65 ˚C
(EtOAc-n-hexane). ¹H
NMR (400 MHz, CDCl3): δ = 3.79 (2 H,
d, J = 5.4
Hz, minor), 3.64 (1 H, d, J = 5.6
Hz, major), 3.41 (1 H, d, J = 6.2
Hz, major), 3.30 (1 H, d, J = 6.2
Hz, minor). MS (EI): m/z (%) = (1.1) 402 [M + 1]+.
Anal. Calcd for C25H23NO2S: C,
74.78; H, 5.77; N, 3.49. Found: C, 75.16; H, 5.74; N, 3.37.
Compound 3d (major): mp 97-98 ˚C
(Et2O-n-hexane); [α]D
²³ +22.0
(c 0.90, CHCl3).
Compound 3d (minor): mp 105-106 ˚C
(Et2O-n-hexane); [α]D
²³ +12.4
(c 2.03, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 7.62 (2 H,
d, J = 8.2
Hz, minor), 7.54 (2 H, d, J = 8.2
Hz, major), 3.56 (1 H, m, minor), 3.53 (1 H, m, major), 3.11 (1 H,
d, J = 4.3
Hz, major), 3.08 (1 H, d, J = 4.3
Hz, minor). HRMS-FAB: m/z calcd
for C12H14NO2S: 236.074526; found:
236.075172.
Compound 3f: oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.60 (2 H,
d, J = 7.8
Hz, minor), 7.54 (2 H, d, J = 7.8
Hz, major), 3.23 (1 H, d, J = 4.4
Hz, minor), 3.21 (1 H, d, J = 4.4
Hz, major), 3.13 (1 H, d, J = 4.4
Hz, major), 3.10 (1 H, d, J = 4.4 Hz,
minor). MS (FI): m/z (%) =(100)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.95; H, 6.81; N, 5.17.
Compound 3g: mp 92-93 ˚C
(Et2O-n-pentane). ¹H
NMR (400 MHz, CDCl3): δ = 7.61 (2 H,
d, J = 8.1
Hz, minor), 7.56 (2 H, d, J = 8.1
Hz, major), 3.13 (1 H, J = 7.7,
1.5 Hz, major), 3.06 (1 H, m, minor), 2.97 (1 H, dd, J = 7.7, 4.6
Hz, major), 2.80 (1 H, m, minor). MS (EI): m/z (%) =(18)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.62; H, 6.72; N, 5.29.
Compound 3h: diasteriomeric mixture (1:1), mp 69-71 ˚C, 77-80 ˚C
(EtOAc). ¹H NMR (400 MHz, CDCl3): δ = 2.81
(1
H, d, J = 4.1
Hz), 2.79 (1 H, d, J = 7.3
Hz), 2.71 (1 H, d, J = 6.9
Hz), 2.24 (1 H, d, J = 3.7
Hz). HRMS (EI): m/z calcd for
C16H15NO2S: 285.08235; found: 285.083598.
Anal. Calcd for C16H15NO2S: C,
67.34; H, 5.30; N, 4.91. Found: C, 67.34; H, 5.30; N, 4.91.
Compounds 3i: 3Ai: mp 103-105 ˚C
(EtOAc); [α]D
²³ -15.1 (c 3.30, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.91 (1 H, dd, J = 6.5, 3.3
Hz), 2.89 (1 H, d, J = 3.3
Hz), 2.66 (1 H, d, J = 6.5
Hz). Anal. Calcd for C15H15NO3S2:
C, 56.05; H, 4.70; N, 4.36. Found: C, 55.87; H, 4.76; N, 4.38. 3Bi: mp 120-121 ˚C
(EtOAc); [α]D
²³ +7.4
(c 2.04, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.70 (1 H,
dd, J = 6.3,
3.2 Hz), 2.75 (1 H, d, J = 6.3
Hz), 2.43 (1 H, br d); the attribution to 3Ai and 3Bi may be reversed. HRMS (EI): m/z calcd for C15H15NO3S2: 321.04933;
found: 321.04958.
Oxidation of 3Aa/3Ba
To
a solution of 3Aa/3Ba (0.2
mmol) was added MCPBA (0.4 mmol), and after 18 h at r.t. the solvent
was removed and the enantiomeric mixture of 4Aa/4Ba isolated (yield 99%); ee 53% from ¹H
NMR (400 MHz, CDCl3): δ = 3.45 (1 H,
H2) split by addition of Eu(hfc)3.