Abstract
We have evaluated the potential of CuI -doped zeolites
as heterogeneous catalysts for organic synthesis. Such catalysts proved
to be easy to prepare, handle, recover, and recycle. They could
be applied to different synthetic applications, such as [3+2] cycloadditions
of alkynes with either azides or azomethine imines and the homocoupling
of alkynes. These interesting characteristics make them highly attractive
as catalysts for organic chemists, especially with regard to aspects
of ‘green chemistry’.
1 Introduction
2 Synthesis and Structures of CuI -Doped Zeolites
3 CuI -Zeolites as Catalysts in Organic Synthesis
3.1 Cycloadditions: ‘Click in Zeo’
3.2 Cascade Reactions: Substitution and Cycloaddition
3.3 Cycloadditions: Mechanistic Investigations
3.4 Homocoupling of Alkynes
4 Conclusion
Key words
zeolite - copper - catalysis - green
chemistry
References
1a
Anastas PT.
Warner JC.
Green Chemistry: Theory and
Practice
Oxford University Press;
Oxford:
1998.
1b
Green
Chemistry: Frontiers in Benign Chemical Synthesis and Processes
Anastas P.
Williamson TC.
Oxford University Press;
Oxford:
1998.
1c
Green Chemistry:
Challenging Perspectives
Tundo P.
Anastas PT.
Oxford
University Press;
Oxford:
1999.
1d
Clark JH.
Green Chem.
1999,
1:
1
For recent examples with liquid
superacids, see:
2a
Vasilyev A.
Walspurger S.
Haouas M.
Pale P.
Sommer J.
Rudenko AP.
Org. Biomol. Chem.
2004,
2:
3483
2b
Vasilyev A.
Walspurger S.
Sommer J.
Pale P.
Tetrahedron
2005,
61:
3559
2c
Vasilyev A.
Walspurger S.
Chassaing S.
Pale P.
Sommer J.
Eur.
J. Org. Chem.
2007,
5740
For recent examples with solid superacids (i.e., zeolites),
see:
2d
Sani Souna Sido A.
Chassaing S.
Kumarraja M.
Pale P.
Sommer J.
Tetrahedron
Lett.
2007,
48:
5911
2e
Sani Souna Sido A.
Chassaing S.
Pale P.
Sommer J.
Appl. Catal.,
A
2008,
336:
101
2f
Chassaing S.
Kumarraja M.
Pale P.
Sommer J.
Org. Lett.
2007,
9:
3889
3a
Evano G.
Blanchard N.
Tourni M.
Chem. Rev.
2008,
108:
3054
3b
Modern
Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
3c
Comprehensive Organometallic
Chemistry III
Vols. 10 and 11:
Crabtree R.
Mingos DMP.
Elsevier;
Oxford:
2006.
4
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int. Ed.
2001,
40:
2004
5a
Kallo D.
Rev. Mineral. Geochem.
2001,
45:
519
5b
Larsen SC. In Environmental Catalysis
Grassian VK.
CRC
Press;
Boca Raton:
2005.
p.269
6a For
a recent review, see: Berthomieu D.
Delahay G.
Catal. Rev.
2006,
48:
269
6b
Delahay G.
Coq B.
Broussous L.
Appl.
Catal., B
1997,
12:
49
6c Nam I.-S, Yim SD, Baik JH, Oh SH, and Cho BK. inventors; WO 2004,108,264.
7 Han H.-S, and Kim E.-S. inventors; WO 2007,004,774.
8 Weitkamp J, Ernst S, Roeck H, Scheinost K, Hammer B, Goll W, and Michaud H. inventors; DE 4026364.
9
Chen HY.
Chen L.
Lin J.
Tan KL.
Li J.
Inorg.
Chem.
1997,
36:
1417
10a
Drake IJ.
Zhang Y.
Briggs D.
Lim B.
Chau T.
Bell AT.
J.
Phys. Chem. B
2006,
110:
11654
10b
King ST.
J. Catal.
1996,
161:
530
10c
King ST.
Catal. Today
1997,
33:
173
11
Kazansky VB.
Pidko EA.
Catal. Today
2005,
110:
281
12
Gomez-Lor B.
Iglesias M.
Cascales C.
Gutierrez-Puebla E.
Monge MA.
Chem. Mater.
2001,
13:
1364
13a
Spoto G.
Zecchina A.
Bordiga S.
Richiardi G.
Martra G.
Appl. Catal., B
1994,
3:
151
13b
Lamberti C.
Bordiga S.
Salvalaggio M.
Spoto G.
Zecchina A.
Geobaldo F.
Vlaic G.
Bellatreccia M.
J. Phys. Chem. B
1997,
101:
344
13c
Li Z.
Xie K.
Slade RCT.
Appl. Catal.,
A
2001,
209:
107
14 Cu loading had been verified by scanning
electron microscopy and quantified by elemental analysis (ICP-OES).
15
Kuhn P.
Pale P.
Sommer J.
Louis B.
J. Phys. Chem. C
2009,
113:
2903
16
Cycloaddition
Reactions in Organic Synthesis
Kobayashi S.
Jørgensen KA.
Wiley-VCH;
Weinheim:
2001.
17a
Huisgen R.
Szeimis G.
Moebius L.
Chem. Ber.
1967,
100:
2494
17b
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry
Padwa A.
Wiley;
New
York:
1984.
p.1-176
17c
Huisgen R.
Pure
Appl. Chem.
1989,
61:
613
18a
Tornøe CW.
Christensen C.
Meldal M.
J. Org. Chem.
2002,
67:
3057
18b
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
For recent reviews, see:
19a
Bock VD.
Hiemstra H.
van Maarseveen JH.
Eur. J. Org. Chem.
2006,
51
19b
Moses JE.
Moorhouse AD.
Chem.
Soc. Rev.
2007,
36:
1249
19c
Lutz J.-F.
Angew.
Chem. Int. Ed.
2007,
46:
1018
19d
Meldal M.
Tornøe CW.
Chem. Rev.
2008,
108:
2952
20a
Dorn H.
Otto A.
Chem.
Ber.
1968,
101:
3287
20b
Dorn H.
Otto A.
Angew. Chem., Int. Ed. Engl.
1968,
7:
214
21
Shintani R.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
10778
22
Vayssilov G.
Quantum Chemical Modeling the Location of Extraframework
Metal Cations in Zeolites , In Theoretical Aspect
of Heterogeneous Catalysis
Vol. 8:
Springer;
Heidelberg:
2002.
p.29-30
23
Chassaing S.
Kumarraja M.
Sani Souna Sido A.
Pale P.
Sommer J.
Org.
Lett.
2007,
9:
883
24
Keller M.
Sani Souna Sido A.
Pale P.
Sommer J.
Chem. Eur.
J.
2009,
15:
2810
25 10 mol% of CuI -zeolite
catalyst correspond to 10 mol% of CuI species
as calculated from exchange of the acidic sites of the corresponding
H-zeolite. For a recent method of determination of Brönsted
acid sites on zeolites, see: Louis B.
Walspurger S.
Sommer J.
Catal. Lett.
2004,
93:
81
26
Chassaing S.
Sani Souna Sido A.
Alix A.
Kumarraja M.
Pale P.
Sommer J.
Chem. Eur.
J.
2008,
14:
6713
27a
Lewandos GS.
Maki JW.
Ginnebaugh JP.
Organometallics
1982,
1:
1700
27b
Halbes-Letinois U.
Pale P.
Berger S.
J.
Org. Chem.
2005,
70:
9185
28 Deuterated zeolites were prepared
through H/D exchange from native H-zeolites, according
to : Haouas M.
Walspurger S.
Taulelle F.
Sommer J.
J.
Am. Chem. Soc.
2004,
126:
599
29a
Glaser C.
Ber. Dtsch. Chem. Ges.
1869,
2:
422
29b
Glaser C.
Justus
Liebigs Ann. Chem.
1870,
154:
137
30
Shi Shun ALK.
Tykwinski RR.
Angew.
Chem. Int. Ed.
2006,
45:
1034
31a
Gholami M.
Tykwinski RR.
Chem.
Rev.
2006,
106:
4997
31b
Morgan BJ.
Xie X.
Phuan PW.
Kozlowski MC.
J.
Org. Chem.
2007,
72:
6171
32a
Cataldo F.
Polyynes:
Synthesis, Properties and Applications
CRC Press;
Boca
Raton:
2005.
32b
Diederich F.
Stang PJ.
Tykwinski RR.
Acetylene Chemistry: Chemistry,
Biology, and Material Science
Wiley-VCH;
Weinheim:
2005.
33a
Santoyo-Gonzalez F.
Torres-Pinedo A.
Sanchez-Ortega A.
J. Org. Chem.
2000,
65:
4409
33b
Chang K.-J.
Chae MK.
Lee C.
Lee J.-Y.
Jeong K.-S.
Tetrahedron Lett.
2006,
47:
6385
33c
Opris DM.
Ossenbach A.
Lentz D.
Schlüter AD.
Org.
Lett.
2008,
10:
2091
34a
Eglinton G.
Galbraith AR.
Chem.
Ind. (London)
1956,
737
34b
Eglinton G.
Galbraith AR.
J. Chem. Soc.
1959,
889
34c
Hay AS.
J. Org. Chem.
1962,
27:
3320
34d
Rossi R.
Carpita A.
Bigelli C.
Tetrahedron
Lett.
1985,
26:
523
34e
Siemsen P.
Livingston RC.
Diederich F.
Angew.
Chem. Int. Ed.
2000,
39:
2632
34f
Adimurthy S.
Malakar CC.
Beifuss U.
J.
Org. Chem.
2009,
74:
5648
34g
Li L.
Wang J.
Zhang G.
Liu Q.
Tetrahedron Lett.
2009,
50:
4033
35
Oishi T.
Katayama T.
Yamaguchi K.
Mizuno N.
Chem. Eur. J.
2009,
15:
7539
36
Kuhn P.
Alix A.
Kumarraja M.
Louis B.
Pale P.
Sommer J.
Eur. J. Org. Chem.
2009,
423
37
Derouane EG.
From shape selective zeolites to zeozymes: confinement
effects in sorption and catalysis by zeolites
First
Francqui Colloquium;
Brussels:
1996.
38
Roy R.
Das SK.
Hernández-Meteo F.
Santoyo-González F.
Gan Z.
Synthesis
2001,
1049
39a
Carbohydrates in Chemistry and Biology
Vols.
1-4:
Ernst B.
Hart GW.
Sinaÿ P.
Wiley-VCH;
Weinheim:
2000.
39b
Glycoscience
Driguez H.
Thiem J.
Springer;
Berlin:
1997.
39c
Gruner SAW.
Locardi E.
Lohof E.
Kessler H.
Chem. Rev.
2002,
102:
491
39d
Davis BG.
Chem. Rev.
2002,
102:
579
40a
Chodkiewicz W.
Cadiot P.
C.
R. Hebd. Seances Acad. Sci.
1955,
241:
1055
40b
Chodkiewicz W.
Ann.
Chim (Paris)
1957,
2:
819
41
Kamata K.
Nakagawa Y.
Yamaguchi K.
Mizuno N.
J. Am. Chem. Soc.
2008,
130:
15304
42
Matthew P.
Neels A.
Albrecht M.
J.
Am. Chem. Soc.
2008,
130:
13534