Abstract
We have evaluated the potential of CuI -doped zeolites
as heterogeneous catalysts for organic synthesis. Such catalysts proved
to be easy to prepare, handle, recover, and recycle. They could
be applied to different synthetic applications, such as [3+2] cycloadditions
of alkynes with either azides or azomethine imines and the homocoupling
of alkynes. These interesting characteristics make them highly attractive
as catalysts for organic chemists, especially with regard to aspects
of ‘green chemistry’.
1 Introduction
2 Synthesis and Structures of CuI -Doped Zeolites
3 CuI -Zeolites as Catalysts in Organic Synthesis
3.1 Cycloadditions: ‘Click in Zeo’
3.2 Cascade Reactions: Substitution and Cycloaddition
3.3 Cycloadditions: Mechanistic Investigations
3.4 Homocoupling of Alkynes
4 Conclusion
Key words
zeolite - copper - catalysis - green
chemistry
References
<A NAME="RZ27909SS-1A">1a </A>
Anastas PT.
Warner JC.
Green Chemistry: Theory and
Practice
Oxford University Press;
Oxford:
1998.
<A NAME="RZ27909SS-1B">1b </A>
Green
Chemistry: Frontiers in Benign Chemical Synthesis and Processes
Anastas P.
Williamson TC.
Oxford University Press;
Oxford:
1998.
<A NAME="RZ27909SS-1C">1c </A>
Green Chemistry:
Challenging Perspectives
Tundo P.
Anastas PT.
Oxford
University Press;
Oxford:
1999.
<A NAME="RZ27909SS-1D">1d </A>
Clark JH.
Green Chem.
1999,
1:
1
For recent examples with liquid
superacids, see:
<A NAME="RZ27909SS-2A">2a </A>
Vasilyev A.
Walspurger S.
Haouas M.
Pale P.
Sommer J.
Rudenko AP.
Org. Biomol. Chem.
2004,
2:
3483
<A NAME="RZ27909SS-2B">2b </A>
Vasilyev A.
Walspurger S.
Sommer J.
Pale P.
Tetrahedron
2005,
61:
3559
<A NAME="RZ27909SS-2C">2c </A>
Vasilyev A.
Walspurger S.
Chassaing S.
Pale P.
Sommer J.
Eur.
J. Org. Chem.
2007,
5740
For recent examples with solid superacids (i.e., zeolites),
see:
<A NAME="RZ27909SS-2D">2d </A>
Sani Souna Sido A.
Chassaing S.
Kumarraja M.
Pale P.
Sommer J.
Tetrahedron
Lett.
2007,
48:
5911
<A NAME="RZ27909SS-2E">2e </A>
Sani Souna Sido A.
Chassaing S.
Pale P.
Sommer J.
Appl. Catal.,
A
2008,
336:
101
<A NAME="RZ27909SS-2F">2f </A>
Chassaing S.
Kumarraja M.
Pale P.
Sommer J.
Org. Lett.
2007,
9:
3889
<A NAME="RZ27909SS-3A">3a </A>
Evano G.
Blanchard N.
Tourni M.
Chem. Rev.
2008,
108:
3054
<A NAME="RZ27909SS-3B">3b </A>
Modern
Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
<A NAME="RZ27909SS-3C">3c </A>
Comprehensive Organometallic
Chemistry III
Vols. 10 and 11:
Crabtree R.
Mingos DMP.
Elsevier;
Oxford:
2006.
<A NAME="RZ27909SS-4">4 </A>
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int. Ed.
2001,
40:
2004
<A NAME="RZ27909SS-5A">5a </A>
Kallo D.
Rev. Mineral. Geochem.
2001,
45:
519
<A NAME="RZ27909SS-5B">5b </A>
Larsen SC. In Environmental Catalysis
Grassian VK.
CRC
Press;
Boca Raton:
2005.
p.269
<A NAME="RZ27909SS-6A">6a </A> For
a recent review, see:
Berthomieu D.
Delahay G.
Catal. Rev.
2006,
48:
269
<A NAME="RZ27909SS-6B">6b </A>
Delahay G.
Coq B.
Broussous L.
Appl.
Catal., B
1997,
12:
49
<A NAME="RZ27909SS-6C">6c </A>
Nam I.-S,
Yim SD,
Baik JH,
Oh SH, and
Cho BK. inventors; WO 2004,108,264.
<A NAME="RZ27909SS-7">7 </A>
Han H.-S, and
Kim E.-S. inventors; WO 2007,004,774.
<A NAME="RZ27909SS-8">8 </A>
Weitkamp J,
Ernst S,
Roeck H,
Scheinost K,
Hammer B,
Goll W, and
Michaud H. inventors; DE 4026364.
<A NAME="RZ27909SS-9">9 </A>
Chen HY.
Chen L.
Lin J.
Tan KL.
Li J.
Inorg.
Chem.
1997,
36:
1417
<A NAME="RZ27909SS-10A">10a </A>
Drake IJ.
Zhang Y.
Briggs D.
Lim B.
Chau T.
Bell AT.
J.
Phys. Chem. B
2006,
110:
11654
<A NAME="RZ27909SS-10B">10b </A>
King ST.
J. Catal.
1996,
161:
530
<A NAME="RZ27909SS-10C">10c </A>
King ST.
Catal. Today
1997,
33:
173
<A NAME="RZ27909SS-11">11 </A>
Kazansky VB.
Pidko EA.
Catal. Today
2005,
110:
281
<A NAME="RZ27909SS-12">12 </A>
Gomez-Lor B.
Iglesias M.
Cascales C.
Gutierrez-Puebla E.
Monge MA.
Chem. Mater.
2001,
13:
1364
<A NAME="RZ27909SS-13A">13a </A>
Spoto G.
Zecchina A.
Bordiga S.
Richiardi G.
Martra G.
Appl. Catal., B
1994,
3:
151
<A NAME="RZ27909SS-13B">13b </A>
Lamberti C.
Bordiga S.
Salvalaggio M.
Spoto G.
Zecchina A.
Geobaldo F.
Vlaic G.
Bellatreccia M.
J. Phys. Chem. B
1997,
101:
344
<A NAME="RZ27909SS-13C">13c </A>
Li Z.
Xie K.
Slade RCT.
Appl. Catal.,
A
2001,
209:
107
<A NAME="RZ27909SS-14">14 </A>
Cu loading had been verified by scanning
electron microscopy and quantified by elemental analysis (ICP-OES).
<A NAME="RZ27909SS-15">15 </A>
Kuhn P.
Pale P.
Sommer J.
Louis B.
J. Phys. Chem. C
2009,
113:
2903
<A NAME="RZ27909SS-16">16 </A>
Cycloaddition
Reactions in Organic Synthesis
Kobayashi S.
Jørgensen KA.
Wiley-VCH;
Weinheim:
2001.
<A NAME="RZ27909SS-17A">17a </A>
Huisgen R.
Szeimis G.
Moebius L.
Chem. Ber.
1967,
100:
2494
<A NAME="RZ27909SS-17B">17b </A>
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry
Padwa A.
Wiley;
New
York:
1984.
p.1-176
<A NAME="RZ27909SS-17C">17c </A>
Huisgen R.
Pure
Appl. Chem.
1989,
61:
613
<A NAME="RZ27909SS-18A">18a </A>
Tornøe CW.
Christensen C.
Meldal M.
J. Org. Chem.
2002,
67:
3057
<A NAME="RZ27909SS-18B">18b </A>
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
For recent reviews, see:
<A NAME="RZ27909SS-19A">19a </A>
Bock VD.
Hiemstra H.
van Maarseveen JH.
Eur. J. Org. Chem.
2006,
51
<A NAME="RZ27909SS-19B">19b </A>
Moses JE.
Moorhouse AD.
Chem.
Soc. Rev.
2007,
36:
1249
<A NAME="RZ27909SS-19C">19c </A>
Lutz J.-F.
Angew.
Chem. Int. Ed.
2007,
46:
1018
<A NAME="RZ27909SS-19D">19d </A>
Meldal M.
Tornøe CW.
Chem. Rev.
2008,
108:
2952
<A NAME="RZ27909SS-20A">20a </A>
Dorn H.
Otto A.
Chem.
Ber.
1968,
101:
3287
<A NAME="RZ27909SS-20B">20b </A>
Dorn H.
Otto A.
Angew. Chem., Int. Ed. Engl.
1968,
7:
214
<A NAME="RZ27909SS-21">21 </A>
Shintani R.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
10778
<A NAME="RZ27909SS-22">22 </A>
Vayssilov G.
Quantum Chemical Modeling the Location of Extraframework
Metal Cations in Zeolites , In Theoretical Aspect
of Heterogeneous Catalysis
Vol. 8:
Springer;
Heidelberg:
2002.
p.29-30
<A NAME="RZ27909SS-23">23 </A>
Chassaing S.
Kumarraja M.
Sani Souna Sido A.
Pale P.
Sommer J.
Org.
Lett.
2007,
9:
883
<A NAME="RZ27909SS-24">24 </A>
Keller M.
Sani Souna Sido A.
Pale P.
Sommer J.
Chem. Eur.
J.
2009,
15:
2810
<A NAME="RZ27909SS-25">25 </A> 10 mol% of CuI -zeolite
catalyst correspond to 10 mol% of CuI species
as calculated from exchange of the acidic sites of the corresponding
H-zeolite. For a recent method of determination of Brönsted
acid sites on zeolites, see:
Louis B.
Walspurger S.
Sommer J.
Catal. Lett.
2004,
93:
81
<A NAME="RZ27909SS-26">26 </A>
Chassaing S.
Sani Souna Sido A.
Alix A.
Kumarraja M.
Pale P.
Sommer J.
Chem. Eur.
J.
2008,
14:
6713
<A NAME="RZ27909SS-27A">27a </A>
Lewandos GS.
Maki JW.
Ginnebaugh JP.
Organometallics
1982,
1:
1700
<A NAME="RZ27909SS-27B">27b </A>
Halbes-Letinois U.
Pale P.
Berger S.
J.
Org. Chem.
2005,
70:
9185
<A NAME="RZ27909SS-28">28 </A> Deuterated zeolites were prepared
through H/D exchange from native H-zeolites, according
to :
Haouas M.
Walspurger S.
Taulelle F.
Sommer J.
J.
Am. Chem. Soc.
2004,
126:
599
<A NAME="RZ27909SS-29A">29a </A>
Glaser C.
Ber. Dtsch. Chem. Ges.
1869,
2:
422
<A NAME="RZ27909SS-29B">29b </A>
Glaser C.
Justus
Liebigs Ann. Chem.
1870,
154:
137
<A NAME="RZ27909SS-30">30 </A>
Shi Shun ALK.
Tykwinski RR.
Angew.
Chem. Int. Ed.
2006,
45:
1034
<A NAME="RZ27909SS-31A">31a </A>
Gholami M.
Tykwinski RR.
Chem.
Rev.
2006,
106:
4997
<A NAME="RZ27909SS-31B">31b </A>
Morgan BJ.
Xie X.
Phuan PW.
Kozlowski MC.
J.
Org. Chem.
2007,
72:
6171
<A NAME="RZ27909SS-32A">32a </A>
Cataldo F.
Polyynes:
Synthesis, Properties and Applications
CRC Press;
Boca
Raton:
2005.
<A NAME="RZ27909SS-32B">32b </A>
Diederich F.
Stang PJ.
Tykwinski RR.
Acetylene Chemistry: Chemistry,
Biology, and Material Science
Wiley-VCH;
Weinheim:
2005.
<A NAME="RZ27909SS-33A">33a </A>
Santoyo-Gonzalez F.
Torres-Pinedo A.
Sanchez-Ortega A.
J. Org. Chem.
2000,
65:
4409
<A NAME="RZ27909SS-33B">33b </A>
Chang K.-J.
Chae MK.
Lee C.
Lee J.-Y.
Jeong K.-S.
Tetrahedron Lett.
2006,
47:
6385
<A NAME="RZ27909SS-33C">33c </A>
Opris DM.
Ossenbach A.
Lentz D.
Schlüter AD.
Org.
Lett.
2008,
10:
2091
<A NAME="RZ27909SS-34A">34a </A>
Eglinton G.
Galbraith AR.
Chem.
Ind. (London)
1956,
737
<A NAME="RZ27909SS-34B">34b </A>
Eglinton G.
Galbraith AR.
J. Chem. Soc.
1959,
889
<A NAME="RZ27909SS-34C">34c </A>
Hay AS.
J. Org. Chem.
1962,
27:
3320
<A NAME="RZ27909SS-34D">34d </A>
Rossi R.
Carpita A.
Bigelli C.
Tetrahedron
Lett.
1985,
26:
523
<A NAME="RZ27909SS-34E">34e </A>
Siemsen P.
Livingston RC.
Diederich F.
Angew.
Chem. Int. Ed.
2000,
39:
2632
<A NAME="RZ27909SS-34F">34f </A>
Adimurthy S.
Malakar CC.
Beifuss U.
J.
Org. Chem.
2009,
74:
5648
<A NAME="RZ27909SS-34G">34g </A>
Li L.
Wang J.
Zhang G.
Liu Q.
Tetrahedron Lett.
2009,
50:
4033
<A NAME="RZ27909SS-35">35 </A>
Oishi T.
Katayama T.
Yamaguchi K.
Mizuno N.
Chem. Eur. J.
2009,
15:
7539
<A NAME="RZ27909SS-36">36 </A>
Kuhn P.
Alix A.
Kumarraja M.
Louis B.
Pale P.
Sommer J.
Eur. J. Org. Chem.
2009,
423
<A NAME="RZ27909SS-37">37 </A>
Derouane EG.
From shape selective zeolites to zeozymes: confinement
effects in sorption and catalysis by zeolites
First
Francqui Colloquium;
Brussels:
1996.
<A NAME="RZ27909SS-38">38 </A>
Roy R.
Das SK.
Hernández-Meteo F.
Santoyo-González F.
Gan Z.
Synthesis
2001,
1049
<A NAME="RZ27909SS-39A">39a </A>
Carbohydrates in Chemistry and Biology
Vols.
1-4:
Ernst B.
Hart GW.
Sinaÿ P.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RZ27909SS-39B">39b </A>
Glycoscience
Driguez H.
Thiem J.
Springer;
Berlin:
1997.
<A NAME="RZ27909SS-39C">39c </A>
Gruner SAW.
Locardi E.
Lohof E.
Kessler H.
Chem. Rev.
2002,
102:
491
<A NAME="RZ27909SS-39D">39d </A>
Davis BG.
Chem. Rev.
2002,
102:
579
<A NAME="RZ27909SS-40A">40a </A>
Chodkiewicz W.
Cadiot P.
C.
R. Hebd. Seances Acad. Sci.
1955,
241:
1055
<A NAME="RZ27909SS-40B">40b </A>
Chodkiewicz W.
Ann.
Chim (Paris)
1957,
2:
819
<A NAME="RZ27909SS-41">41 </A>
Kamata K.
Nakagawa Y.
Yamaguchi K.
Mizuno N.
J. Am. Chem. Soc.
2008,
130:
15304
<A NAME="RZ27909SS-42">42 </A>
Matthew P.
Neels A.
Albrecht M.
J.
Am. Chem. Soc.
2008,
130:
13534