Subscribe to RSS
DOI: 10.1055/s-0029-1219158
Synthesis of Brombyins II and III, Cyclostachines A and B, and Cyclopiperstachine, Plant-Derived Octahydronaphthalenes
Publication History
Publication Date:
22 December 2009 (online)

Abstract
In this paper we present a study into the direct formation of five plant-derived natural products via intramolecular Diels-Alder cycloaddition of a series of 1,7,9-decatriene precursors. Methods for the preparation of the trienes are also discussed.
Key words
natural products - Diels-Alder - diene synthesis
- 1
Parsons IC.Gray AI.Hartley TG.Skelton BW.Waterman PG.White AH. J. Chem. Soc., Perkin Trans. 1 1992, 645 - 2
Parsons IC.Gray AI.Hartley TG.Waterman PG. Phytochemistry 1993, 33: 479 -
4a
Joshi BS.Viswanathan N.Gawad DH.Balakrishnan V.von Philipsborn W.Quick A. Experientia 1975, 31: 880 -
4b
Joshi BS.Viswanathan N.Gawad DH.Balakrishnan V.von Philipsborn W. Helv. Chim. Acta 1975, 58: 2295 -
5a
Viswanathan N.Balakrishnan V.Joshi BS.von Philipsborn W. Helv. Chim. Acta 1975, 58: 2026 -
5b
Joshi BS.Viswanathan N.Gawad DH.von Philipsborn W. Helv. Chim. Acta 1975, 58: 1551 -
5c
Viswanathan N.Balakrishnan V.Joshi BS.von Philipsborn W. Helv. Chim. Acta 1975, 58: 220 -
5d
Joshi BS.Viswanathan N.Gawad DH.Balakrishnan V.von Philipsborn W. Helv. Chim. Acta 1975, 58: 170 -
6a
Lygo B.Bhatia M.Cooke JWB.Hirst DJ. Tetrahedron Lett. 2003, 44: 2529 -
6b
Lygo B.Hirst DJ. Synthesis 2005, 3257 - For other examples of thermal IMDA reactions involving 1,7,9-decatrienes, which illustrate typical reaction conditions for a variety of dienophiles, see:
-
7a
Williams DR.Brugel TA. Org. Lett. 2000, 2: 1023 -
7b
Witter DJ.Vederas JC. J. Org. Chem. 1996, 61: 2613 -
7c
Jung SH.Lee YS.Park H.Kwon D.-S. Tetrahedron Lett. 1995, 36: 1051 -
7d
Craig D.Geach NJ.Pearson CJ.Salwin AMZ.White AJP.Williams DJ. Tetrahedron 1995, 51: 6071 -
7e
Craig D.Fischer DA.Kemal O.Marsh A.Plessner T.Salwin AMZ.Williams DJ. Tetrahedron 1991, 47: 3095 -
7f
Roush WR.Essenfeld AP.Warmus JS. Tetrahedron Lett. 1987, 28: 2447 -
7g
Funk RL.Zeller WE. J. Org. Chem. 1982, 47: 180 -
7h
Roush WR.Gillis HR. J. Org. Chem. 1982, 47: 4825 -
7i
Roush WR.Hall SE. J. Am. Chem. Soc. 1981, 103: 5200 - 8
Wang K.Chu K.-H. J. Org. Chem. 1984, 49: 5175 - 9 For a closely related sequence of
transformations, see:
Roush WR.Sciotti RJ. J. Am. Chem. Soc. 1994, 116: 6457 -
10a
Strunz GM.Finlay HJ. Can. J. Chem. 1996, 74: 419 -
10b
Nagumo S.Matsukuma A.Suemune H.Sakai K. Tetrahedron 1993, 49: 10501 - 12
Aronovitch C.Mazur Y. J. Org. Chem. 1985, 50: 149 - Diels-Alder reactions involving substrates of this type would be expected to have highly asynchronous transition states. For further discussion, see:
-
13a
Raimondi L.Brown FK.Gonzalez J.Houk KN. J. Am. Chem. Soc. 1992, 114: 4796 -
13b
Wu T.-C.Houk KN. Tetrahedron Lett. 1985, 26: 2297 -
13c
Wu T.-C.Houk KN. Tetrahedron Lett. 1985, 26: 2293 - 14
Doncaster JR.Ryan H.Whitehead RC. Synlett 2003, 651 -
16a
Otto S.Engberts JBFN. Pure Appl. Chem. 2000, 72: 1365 -
16b
Breslow R.Rideout DC. J. Am. Chem. Soc. 1980, 102: 7816
References and Notes
It is also conceivable that brombyin IV(4) could arise via autoxidation of 2, followed by epimerization at the ring junction.
11A solution of aldehyde 16 (4.00
g, 22.7 mmol) in anhyd THF (100 mL) was placed under an argon atmosphere
and cooled to 0 ˚C. BF3˙OEt2 (21.0
mL, 162 mmol) was added dropwise and the mixture stirred for 10
min. A solution of cyclo-hexanone (2.40 mL, 22.7 mmol) in anhyd
THF (50 mL) was then added over 20 min. The mixture was then allowed
to warm to r.t. and stirred for a further 30 min. Propan-1,3-diol (8.60
mL, 119 mmol) was then added and the mixture stirred for 12 h before
being quenched by pouring onto sat. aq Na2CO3 (250
mL). The aqueous layer was extracted with Et2O (3 × 150
mL), and the combined organics were washed sequentially with sat.
aq Na2CO3 (2 × 150
mL) and brine (2 × 150 mL). The organic
phase was then dried (MgSO4), filtered, and concentrated
under reduced pressure. The residue was purified by chromatography
on silica gel (2:1 increasing to 1:1 PE-EtOAc) to give
diene 20 (2.64 g, 7.95 mmol, 35%)
as a pale yellow oil. R
f
= 0.16 (2:1 PE-EtOAc). IR
(neat): νmax = 3435, 2930, 1731 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 6.92 (1 H,
d, J = 1.5 Hz, ArH), 6.80 (1
H, dd,
J = 8.0, 1.5
Hz, ArH), 6.74 (1 H, d, J = 8.0
Hz, ArH), 6.58 (1 H, dd, J = 15.5,
10.5 Hz, CH=CHAr), 6.36 (1 H,
d, J = 15.5 Hz, C=CHAr),
6.17 (1 H, dd, J = 15.5, 10.5
Hz, CH=CHCH2), 5.94
(2 H, s, OCH2O), 5.75 (1 H, dt, J = 15.5,
7.0 Hz, C=CHCH2), 4.24
(2 H, t, J = 6.0 Hz, CH2OCO),
3.69 (2 H, t, J = 6.0 Hz, CH
2OH), 2.34 (2 H, t, J = 7.5 Hz, CH2CO),
2.16 (2 H, dt, J = 7.0, 7.0
Hz, CH
2CH=C), 1.87
(2 H, tt, J = 6.0, 6.0 Hz, CH
2CH2OH), 1.66
(2 H, tt, J = 7.5, 7.5 Hz, CH2), 1.46
(2 H, tt, J = 7.5, 7.0 Hz, CH2). ¹³C
NMR (125 MHz, CDCl3): δ = 174.3 (CO),
148.1 (C), 147.0 (C), 134.3 (CH), 132.2 (C), 131.0 (CH), 130.0 (CH),
127.7 (CH), 121.0 (CH), 108.4 (CH), 105.4 (CH), 101.1 (CH2),
61.3 (CH2), 59.3, (CH2), 34.2 (CH2),
32.5 (CH2), 31.8 (CH2), 28.9 (CH2),
24.6 (CH2). MS: (ES+): m/z (%) = 355
(100) [M + Na+],
333 (35) [M + H+].
MS (ES+): m/z calcd
for C19H25O5
+:
333.1697; found: 333.1704 [M + H+].
Reactions in water alone were irreproducible due to insolubility of the substrate and product.
17
Method 1 (PhMe,
165 ˚C)
Triene 25 (330
mg, 1.11 mmol) was dissolved in anhyd toluene (10 mL), the solution
degassed (freeze-thaw) and placed in a sealed tube under
argon. The solution was heated at 165 ˚C for 14
h then allowed to cool to r.t. The solvent was removed under reduced
pressure and the residue purified by chromatography on silica gel
(95:5 PE-EtOAc) to give brombyin II(2)
(100 mg, 0.33 mmol, 30%) and brombyin III (3)
(185 mg, 0.62 mmol 56%) as colourless low-melting solids.
Method 2 (MeOH, 50 ˚C)
Triene 25 (39.0 mg, 0.13 mmol) was dissolved in
MeOH (2.5 mL) and placed in a sealed tube under argon. The solution
was heated at 50 ˚C for 15 h. The solvent was removed
under reduced pressure and the residue passed through a plug of
silica gel (9:1 PE-EtOAc) to give a 90:10 mixture of brombyin
III (3) and brombyin II (2)
(26 mg, 0.09 mmol, 67%).
Method
2 (H
2
O-SDS,
40 ˚C)
SDS (0.50 g, 1.74 mmol) was
dissolved in H2O (10 mL) and stirred for 5 min. Triene 25 (30 mg, 0.10 mmol) was added and the
mixture stirred vigorously at 40 ˚C for 72 h.
The mixture was then extracted with EtOAc (3 × 20
mL), and the combined organic phases were washed with brine (20
mL), dried (MgSO4), filtered, and concentrated under
reduced pressure. The residue was passed through a plug of silica
gel (9:1 PE-EtOAc) to provide a 95:5 mixture of brombyin
III (3) and brombyin II (2)
(18 mg, 0.06 mmol, 60%).
Brombyin II (2):¹ R
f
= 0.39 (9:1 PE-EtOAc).
IR (neat): νmax = 2925, 1705 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 6.71 (1 H,
d, J = 8.0 Hz, ArH), 6.64 (1
H, d, J = 1.5 Hz, ArH), 6.57 (1
H, dd, J = 8.0, 1.5 Hz, ArH),
5.93 (2 H, s, OCH2O), 5.80 (1 H, ddd, J = 10.0,
5.0, 2.5 Hz, CH=CHCHAr), 5.49
(1 H, dt, J = 10.0, 1.5 Hz,
CH=CHCHCH2), 3.54
(1 H, ddd, J = 10.0, 5.0, 2.0
Hz, CHAr), 3.00 (1 H, dd, J = 11.5,
10.5 Hz, CHCO), 2.23 (1 H, m, CH), 2.14 (1 H, m, CH), 1.88 (3 H,
s, CH3), 1.83-0.83 (8 H, m, 4 × CH2). ¹³C
NMR (100 MHz, CDCl3): δ = 214.0 (CO),
147.9 (C), 146.4 (C), 138.0 (CH), 132.7 (C),
128.8 (CH), 121.0 (CH), 108.4 (CH), 108.1 (CH), 101.1 (CH2),
54.4 (CH), 47.9 (CH), 36.9 (CH), 36.3, (CH), 33.0 (CH2),
30.2 (CH2), 28.7 (CH2), 26.3 (CH2),
21.4 (CH3). MS (ES+): m/z (%) = 321
(50) [M + Na+], 299
(100) [M + H+]. MS
(ES+): m/z calcd
for C19H23O3
+:
299.1642; found: 299.1664 [M + H+].
Brombyin
III (3):² R
f
= 0.24
(9:1 PE-EtOAc). IR (neat):
νmax = 2920,
1713 cm-¹. ¹H NMR
(500 MHz, CDCl3): δ = 6.72 (1 H, d, J = 8.0 Hz, ArH), 6.66 (1 H,
d, J = 1.5 Hz, ArH), 6.56 (1
H, dd, J = 8.0, 1.5 Hz, ArH),
5.94 (2 H, s, OCH2O), 5.68 (1 H, br d, J = 10.0
Hz, CH=CHCHCH2),
5.58 (1 H, ddd, J = 10.0, 4.5,
2.5 Hz, CH=CHCHAr), 3.69 (1
H, ddd,
J = 6.5, 4.5,
2.5 Hz, CHAr), 2.85 (1 H, dd, J = 12.0,
6.5 Hz, CHCO), 1.81 (3 H, s, CH3), 1.89-0.70
(10 H, m, 2 × CH, 4 × CH2). ¹³C
NMR (125 MHz, CDCl3): δ = 210.8 (CO),
147.6 (C), 146.7 (C), 134.3 (CH), 132.8 (C), 127.4 (CH), 122.7 (CH),
109.9 (CH), 108.1 (CH), 101.1 (CH2), 58.9 (CH), 43.9 (CH),
42.0 (CH), 36.4 (CH), 33.2 (CH2), 30.4 (CH2),
30.3 (CH3), 26.8 (CH2), 26.5 (CH2).
MS (ES+): m/z (%) = 321 (70) [M + Na+],
299 (100) [M + H+].
MS (ES+): m/z calcd
for C19H23O3
+:
299.1642; found: 299.1655 [M + H+].
Cyclostachine B (7a):4 R
f
= 0.25
(1:1 PE-EtOAc). IR (neat): νmax = 2923,
1632 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 6.71-6.64
(3 H, m, 3 × ArH), 5.94 (1 H, ddd, J = 10.0,
5.0, 2.0 Hz, CH=CHCHCH2),
5.92 (2 H, s, OCH2O), 5.58 (1 H, dt, J = 10.0,
2.0 Hz, CH=CHCHAr), 3.68 (1
H, dq, J = 10.0, 2.0 Hz, CHAr),
3.39 (2 H, dt, J = 7.5, 2.0
Hz, CH2N), 3.13 (1 H, dt, J = 9.5,
7.0, CH=CHCHCH2),
2.75 (1 H, dd,
J = 11.5,
10.0 Hz, CHCO), 2.43-2.13 (3 H, m, CH2N, CHCHCO), 2.04-1.12 (12 H, m,
6 × CH2). ¹³C NMR
(100 MHz, CDCl3): δ = 173.6 (CO), 147.6
(C), 146.1 (C), 138.7 (CH), 133.3 (C), 128.3 (CH), 122.0 (CH), 108.3
(CH), 108.1 (CH), 100.9 (CH2), 46.8 (CH), 47.2 (CH),
46.4 (CH2), 45.5 (CH2), 36.5 (CH), 35.5 (CH),
30.6 (CH2), 28.8 (CH2), 26.5 (CH2),
26.1 (CH2), 24.4 (CH2), 22.1 (CH2).
MS (ES+): m/z (%) = 376
(20) [M + Na+], 354
(100) [M + H+]. MS
(ES+): m/z calcd
for C22H28NO3
+:
354.2064; found: 354.2062 [M + H+].
Cyclopiperstachine
(7b):4 mp 167-168 ˚C
(lit.4 220 ˚C). R
f
= 0.20 (1:1 PE-EtOAc).
IR (neat): νmax = 3329, 2925, 1641, 1486,
1250 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 6.75-6.62
(3 H, m, 3 × ArH), 5.93 (1 H, ddd, J = 10.0,
5.0, 2.5 Hz, CH=CHCHCH2),
5.91 (2 H, s, OCH2O), 5.52 (1 H, dt, J = 10.0,
1.5 Hz, CH=CHCHAr), 5.14 (1
H, br t, J = 5.5 Hz, NH), 3.68
(1 H, m, CHAr), 2.93 (2 H, dt, J = 7.0,
5.5 Hz, CH
2NH), 2.65 (1 H,
dd, J = 11.5, 6.5 Hz, CHCO)
2.28 (1 H, m, CH), 2.19 (1 H, m, CH), 1.88-1.17 (9 H, m,
CH, 4 × CH2), 0.75, 0.70 (2 × 3
H, d, J = 6.5 Hz, 2 × CH3). ¹³C
NMR (100 MHz, CDCl3): δ = 174.1 (CO),
147.8 (C), 146.2 (C), 138.7 (CH), 135.1 (C), 128.6 (CH), 121.2 (CH),
110.0 (CH), 108.1 (CH), 101.0 (CH2), 53.9 (CH), 50.8
(CH), 46.9 (CH2), 46.8 (CH), 36.5 (CH), 35.3, (CH), 30.3
(CH2), 28.4 (CH2), 26.6 (CH2),
21.6 (CH2), 20.1 (CH3). MS (ES+): m/z (%) = 378
(20) [M + Na+],
356 (100) [M + H+].
MS (ES+): m/z calcd
for C22H30NO3
+:
356.2221; found: 356.2252 [M + H+].