Subscribe to RSS
DOI: 10.1055/s-0029-1219176
Efficient and Atom-Economic Synthesis of α-Substituted β-Chromonyl-α,β-unsaturated Carbonyls through Molecular Rearrangement
Publication History
Publication Date:
07 January 2010 (online)
Abstract
Under mild acidic conditions [4+2] cycloadducts of 3-formylchromones and acetylenecarboxylates rearrange to yield α-substituted-β-chromonyl-α,β-unsaturated carbonyl compounds in excellent yields.
Key words
benzopyrones - rearrangements - cascade reactions - acetylenecarboxylates
-
1a
Veitch NG.Grayer RJ. Nat. Prod. Rep. 2008, 25: 555 -
1b
Harborne JB.Williams CA. Nat. Prod. Rep. 1995, 12: 639 -
1c
Harborne JB.Williams CA. Nat. Prod. Rep. 1998, 15: 631 -
1d
Harborne JB.Williams CA. Nat. Prod. Rep. 2001, 18: 310 -
1e
Williams CA.Grayer RJ. Nat. Prod. Rep. 2004, 21: 539 -
1f
Ferreira D.Slade D.Marais JPJ. In Flavonoids: Chemistry, Biochemistry and ApplicationsAndersen OM.Markham KR. CRC Press; Boca Raton: 2006. p.553-616 -
1g
Veitch NC. Nat. Prod. Rep. 2007, 24: 417 -
1h
Reynaud J.Guilet D.Terreux R.Lussignol M.Walchshofer N. Nat. Prod. Rep. 2005, 22: 504 -
1i
Mackova Z.Koblovska R.Lapcik O. Phytochemistry 2006, 67: 849 -
1j
Flavonoids:
Chemistry, Biochemistry and Applications
Andersen OM.Markham KR. CRC Press; Boca Raton: 2006. -
1k
The
Flavonoids: Advances in Research since 1986
Harborne JB. Chapman and Hall; London: 1994. -
1l
The
Science of Flavonoids
Grotewold E. Springer; New York / London: 2006. -
1m
Maurya R.Yadav PP. Nat. Prod. Rep. 2005, 22: 400 - Selected reports:
-
2a
Dahlen K.Wallen EAA.Grotli M.Luthman K. J. Org. Chem. 2006, 71: 6863 -
2b
Bhat AS.Whetstone JL.Brueggemeier RW. J. Comb. Chem. 2000, 2: 597 -
2c
Patil NT.Huo Z.Yamamoto Y. Tetrahedron 2007, 63: 5954 -
3a
Sabitha G. Aldrichimica Acta 1996, 29: 15 -
3b
Ghosh CK.Patra A. J. Heterocycl. Chem. 2008, 45: 1529 -
4a
Khan KM.Ambreen N.Hussain S.Perveen SI.Choudhary M. Bioorg. Med. Chem. 2009, 17: 2983 -
4b
Sersen F.Loos D.Mezesova L.Lacova M. Med. Chem. 2008, 4: 355 -
4c
Shihara M.Sakagami H. Anticancer Res. 2008, 28: 277 -
4d
Dang A.Miller DO.Dawe LN.Bodwell GJ. Org. Lett. 2008, 10: 233 -
4e
Kawase M.Tanaka T.Kan H.Tani S.Nakashima H.Sakagami H. In Vivo 2007, 21: 829 -
4f
Barath Z.Radics R.Spengler G.Ocsovszki I.Kawase M.Motohashi N.Shirataki Y.Shah A.Molnar J. In Vivo 2006, 20: 645 -
5a
Waldmann H.Khedkar V.Dückert H.Schürmann M.Oppel IM.Kumar K. Angew. Chem. Int. Ed. 2008, 47: 6869 -
5b
Terzidis MA.Dimitriadou E.Tsoleridis CA.Stephanidou-Stephanatou J. Tetrahedron Lett. 2009, 50: 2174 -
10a
Ishar MPS.Kumar K.Singh R. Tetrahedron Lett. 1998, 39: 6547 -
10b
Ishar MPS.Singh G.Kumar K.Singh R. Tetrahedron 2000, 56: 7817 - 12
Neo AG.Carrillo RM.Barriga S.Momán E.Marcaccini S.Marcos CF. Synlett 2007, 327 - 14
Waldmann H.Kühn M.Liu W.Kumar K. Chem. Commun. 2008, 1211
References and Notes
General Procedure
for the Rearrangement of the Adducts 3 to 4
TFA (1
mL in 5 mL CH2Cl2) was added slowly dropwise
to the CH2Cl2 solution (5 mL) of the tricyclic
benzopyrones 3 (1 mmol). The reaction mixture
was stirred at r.t. for 30 min under argon. The reaction was monitored
by TLC using cyclohexane-EtOAc (7:3) as eluent. After evaporation
of the solvent, the crude product was purified by column chroma-tography
on silica gel with cyclohexane-EtOAc as the eluent.
Spectroscopic Data for the Ketoester 4a Yellow solid; mp 177-178 ˚C; R f = 0.33 (cyclohexane-EtOAc, 6:4). ¹H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 0.7 Hz, 1 H), 8.21-8.19 (dd, J = 1.6, 8.0 Hz, 1 H), 7.63 (td, J = 1.6, 7.8 Hz, 1 H), 7.50 (d, J = 0.7 Hz, 1 H), 7.49-7.47 (dd, J = 1.0, 7.4 Hz, 1 H), 7.43 (td, J = 1.0, 7.4 Hz, 1 H), 3.98 (s, 3 H), 3.82 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 180.8, 174.0, 164.8, 161.1, 159.6, 155.7, 134.6, 132.9, 131.6, 126.7, 126.2, 123.3, 118.3, 118.0, 53.1, 52.6. ESI-HRMS: m/z calcd for C16H13O7 [M + H+]: 317.06558; found: 317.06568.
8
Spectroscopic Data
for the Aldehyde 4h
Yellow solid; mp 120-122 ˚C; R
f
= 0.39
(cyclohexane-EtOAc, 6:4). ¹H NMR (400
MHz, CDCl3): δ = 9.71 (s, 1 H, CHO),
8.66 (d, J = 0.8
Hz, 1 H), 8.28-8.24 (m, 2 H), 7.73 (d, J = 0.8
Hz, 1 H), 7.52-7.44 (m, 2 H), 3.89 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 189.3, 174.8,
165.6, 158.4, 155.8, 140.8, 134.5, 133.8, 126.4, 126.3, 123.6, 118.4,
118.3, 52.6. ESI-HRMS: m/z calcd
for C14H11O5 [M + H+]:
259.06010; found: 259.06017.
Spectroscopic Data
for the Phenyl Ketone 4o
Yellow solid; mp 171-173 ˚C; R
f
= 0.45
(cyclohexane-EtOAc, 6:4). ¹H NMR (400
MHz, CDCl3): δ = 8.18-8.16 (dd, J = 1.3, 8.4
Hz, 1 H), 8.15 (d, J = 1.0
Hz, 1 H), 8.05 (d, J = 1.0
Hz, 1 H), 7.93-7.91 (dd, J = 1.3,
8.4 Hz, 1 H), 7.63 (td, J = 7.8
Hz, 1 H), 7.55-7.35 (m, 5 H), 7.28-7.25 (m, 1
H), 4.25-4.19 (q, J = 7.1
Hz, 2 H), 1.17 (t, J = 7.1
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 194.5,
175.2, 164.3, 156.2, 155.8, 140.6, 136.1, 134.1, 133.8, 132.9, 129.8,
129.0, 128.7, 128.5, 126.1, 125,7, 123.5, 119.0, 118.1, 61.5, 13.9. ESI-HRMS: m/z calcd for C21H17O5 [M + H+]:
349.10705; found: 349.10719.
The authors appreciate the comments from one of the referees regarding the mechanistic postulations.
13An alternative synthesis of 4 by a Wittig olefination of 3-formylchromone would require the corresponding ketoester or aldehydic phosphoranes which are not commercially available and require multistep synthesis and also remain susceptible to self-olefination and polymerization reaction. The same is true for the alternative aldol condensation strategy to provide 4 by reacting chromone aldehydes with ketoester 7. Using our previously reported methodology¹4 to condense 1,3-dicarbonyls with 3-formylchromone, we could observe self-condensation products of 7 but not any formation of 4a (Scheme [4] ).