Subscribe to RSS
DOI: 10.1055/s-0029-1219209
A Concise Synthesis of Dunnianol
Publication History
Publication Date:
19 January 2010 (online)

Abstract
A short total synthesis of the neosesquilignan dunnianol which features a double Suzuki cross-coupling as a key step is described.
Key words
total synthesis - natural products - Suzuki cross-coupling - neolignans
- 1 For a review, see:
Fukuyama Y.Huang J.-M. Studies in Natural Products Chemistry Vol. 32: . Elsevier; Amsterdam: 2005. p.395-429 - 2
Eykman JF. Ber. Dtsch. Chem. Ges. 1890, 22: 2736 ; abstracted in J. Chem. Soc. 1890, 58, 135; chavicol has since been isolated from numerous plant sources and is found in essential oils of basil, fennel, and anise - 3
Kuano I.Morisaki T.Hara Y.Yang S.-C. Chem. Pharm. Bull. 1991, 39: 2606 - 4
Moriyama M.Huang J.-M.Yang C.-S.Hioki H.Kubo M.Harada K.Fukuyama Y. Tetrahedron 2007, 63: 4263 -
5a Magnolol
is one of the main constituents of the stem bark of Magnolia obovata,
see:
Fujita M.Itokawa H.Sashida Y. Yakushigaku Zasshi 1973, 93: 429 -
5b Magnolol is also one of
the major components of the stem bark of Magnolia officinalis, see:
Ito K.Iida T.Ichino K.Masao T.Namba T. Chem. Pharm. Bull. 1982, 30: 3347 -
5c
Li AJ. Zhong Yao Ton Bao 1985, 10: 10 - 6
Fukuyama Y.Nakade K.Minoshima Y.Yokoyama R.Zhai H.Mitsumoto Y. Bioorg. Med. Chem. Lett. 2002, 12: 1163 - Dunnianol has previously been prepared in low yield by nonselective oxidative phenolic coupling of chavicol using K3Fe(CN)6, see:
-
7a
Sy L.-K.Brown GD. J. Chem. Res., Synop. 1998, 476 - Using FeCl3, see:
-
7b
Haynes CG.Turner AH.Waters WA. J. Chem. Soc. 1956, 2823 - Using horseradish peroxidase, see:
-
7c
Tzeng S.-C.Liu Y.-C. J. Mol. Catal. B: Enzymol. 2004, 32: 7 ; these studies support the hypothesis that dunnianol is derived from chavicol - Commercially available BCl3˙SMe2 was found to be superior to commercially available BBr3. For methods using BBr3 which, in our hands, resulted in the formation of substantial amounts of 4-(2-bromopropyl)phenol, see:
-
9a
Liu Y.-C.Tzeng S.-C.Kong Z.-L. Bioorg. Med. Chem. Lett. 2005, 15: 163 -
9b
Pinard E.Alanine A.Bourson A.Buttelmann B.Gill R.Heitz M.-P.Jaeschke G.Mutel V.Trube G.Wyler R. Bioorg. Med. Chem. Lett. 2001, 11: 2173 -
9c
Agharahimi MR.LeBel NA. J. Org. Chem. 1995, 60: 1858 - 10
Pearson DE.Wysong RD.Breder CV. J. Org. Chem. Soc. 1967, 32: 2358 - 13
Freskos JN.Morrow GW.Swenton JS. J. Org. Chem. 1985, 50: 805 ; similar reactions using n-BuLi in the absence of TMEDA resulted in alkene isomerisation - 14
Sakurai H.Tsukuda T.Hirao T. J. Org. Chem. 2002, 67: 2721 - 15
Littke AF.Dai C.Fu GC. J. Am. Chem. Soc. 2000, 122: 4020 - 16
Wawrzyniak P.Heinicke J. Tetrahedron Lett. 2006, 47: 8921 - For Suzuki couplings of 2,4,6-tribromophenol, see:
-
17a
Basu B.Das P.Bhuiyan MH.Jha S. Tetrahedron Lett. 2001, 47: 8921 -
17b
Liu L.Zhang Y.Xin B. J. Org. Chem. 2006, 71: 2721 - 19 Long reaction times for Suzuki-Miyaura
couplings of 2-bromophenols have been observed by others, see:
Dupuis C.Adiey K.Charruault L.Michelet V.Savignac M.Genét J.-P. Tetrahedron Lett. 2001, 37: 6523
References and Notes
Commercially available estragole (98%), supplied by Acros Organics, was used as received.
11
Analytical Data
for 6
Oil; R
f
= 0.44
(PE-EtOAc, 9:1). IR (CHCl3): νmax = 3510 (OH),
3085 (CH), 2984 (CH), 2908 (CH), 1631 (C=C).
¹H
NMR (270 MHz, CDCl3): δ = 3.29 (2 H,
d, J = 6.7
Hz, ArCH
2CHCH2),
5.08 (1 H, dd, J = 10.3,
1.5 Hz, ArCH2CHCHH
cis
), 5.12 (1 H, dd, J = 16.7,
1.5 Hz, ArCH2CHCHH
trans
), 5.77 (1 H, s, ArOH), 5.89
(1 H, ddt, J = 16.7,
10.3, 6.7 Hz, ArOCH2CHCH2),
7.28 (2 H, s, ArH). ¹³C NMR (67.5 MHz,
CDCl3): δ 38.7 (CH2), 100.0 (Cq), 109.7
(Cq), 114.7 (Cq), 117.0 (CH2), 132.1 (CH), 136.3 (CH).
HRMS (ESI+): m/z calcd
for C9H8OBr2Na: 312.8834; found:
312.8831.
Analytical Data
for 7
Solid; mp = 77-79 ˚C; Rf = 0.13
(PE-EtOAc, 4:1). IR (neat) nmax = 3422 (OH), 3196
(CH), 2958 (CH), 1606 (C=C). 1H NMR (400 MHz, CDCl3): d = 3.37
(2 H, d, J = 6.7 Hz, ArCH2CHCH2), 3.91
(3 H, s, ArOCH3), 5.07 (1 H, dd, J = 16.8,
1.5 Hz, ArCH2CHCHHtrans), 5.09 (1 H, dd, J = 10.1,
1.5 Hz, ArCH2CHCHHcis), 5.97 (1 H, ddt, J = 16.8, 10.1,
6.7 Hz, ArCH2CHCH2), 6.05 [2 H, br s, ArB(OH)2], 6.87
(1 H, d, J = 8.5 Hz, ArH), 7.27 (1 H,
dd, J = 8.5, 2.4 Hz, ArH), 7.67 (1 H,
d, J = 2.4 Hz, ArH). 13C NMR (100 MHz, CDCl3): d = 39.3
(CH2), 55.6 (CH3), 110.1 (CH), 115.6 (CH2), 132.6 (Cq), 132.9 (Cq),
136.9 (CH), 137.7 (CH), 163.1 (Cq), 173.6 (Cq). HRMS (EI+): m/z calcd
for C10H13O3BN: 192.0958; found: 192.0960.
Analytical Data
for 8
Oil; R
f
= 0.42
(PE-EtOAc, 9:1). IR (neat) νmax = 3360
(OH), 2930 (CH), 2837 (CH), 1639 (C=C), 1606 (CH). ¹H
NMR (500 MHz, CDCl3): δ = 3.40 (2 H,
d, J = 6.8
Hz, ArCH
2CHCH2,
H7
′), 3.42 (1 H, d, J = 6.9
Hz, ArCH
2CHCH2,
H7), 3.82 (6 H, s, ArOCH
3),
5.07 (2 H, dd, J = 9.4,
2.0 Hz, ArCH2CHCHH
cis
, H9
′),
5.09 (1 H, dd, J = 10.0,
1.6 Hz, ArCH2CHCHH
cis
, H9), 5.12 (2 H,
dd, J = 19.0,
2.0 Hz, ArCH2CHCHH
trans
, H9
′),
5.14 (1 H, dd, J = 18.1,
1.6 Hz, ArCH2CHCHH
trans
, H9), 5.95-6.06
(3 H, m, ArCH2CHCH2,
H8, H8
′), 6.35 (1 H, s,
ArOH), 6.95 (2 H, d, J = 8.3
Hz, ArH, H3
′), 7.11 (2 H, s, ArH,
H3), 7.18 (2 H, dd, J = 8.3,
2.2 Hz, ArH, H5
′), 7.20 (2 H, d, J = 2.2 Hz,
ArH, H6
′). ¹³C
NMR (125 MHz, CDCl3): δ = 39.4 (CH2,
C7
′), 39.5 (CH2, C7),
56.1 (CH3), 111.2 (CH, C6
′),
115.7 (CH2, C9, C9
′), 127.2
(Cq, C2), 127.8 (Cq, C2
′),
128.8 (CH, C3), 130.9 (CH, C3
′),
131.9 (Cq, C4), 132.3 (CH, C5
′),
132.7 (Cq, C4
′), 137.7 (CH, C8
′),
137.8 (CH, C8), 149.5 (Cq, C1), 154.7 (Cq,
C1
′). HRMS (ESI+): m/z calcd for C29H30O3NH4:
444.2533; found: 444.2518.
TLC, IR, ¹H NMR, ¹³C
NMR, and HRMS were all in agreement with the data reported for dunnianol
in ref. 3.
Analytical Data for 1
Solid;
mp 134-135 ˚C; R
f
= 0.41
(PE-EtOAc, 4:1). IR (neat): νmax = 3690
(OH), 3604 (OH), 3011 (CH), 2926 (CH), 2854 (CH), 1602 (C=C). ¹H
NMR (500 MHz, CDCl3): δ = 3.40 (4 H,
d, J = 6.7
Hz, ArCH
2CHCH2,
H7
′), 3.44 (2 H, d, J = 6.8
Hz, ArCH
2CHCH2,
H7), 5.09 (2 H, dd, J = 10.8, 1.5
Hz, ArCH2CHCHH
cis
, H9
′),
5.11 (2 H, dd, J = 17.0,
1.5 Hz, ArCH2CHCHH
trans
, H9
′),
5.14 (1 H, dd, J = 18.2,
1.8 Hz, ArCH2CHCHH
trans
, H9), 5.15 (1
H, dd, J = 11.4,
1.8 Hz, ArCH2CHCHH
cis
, H9), 5.72 (3 H,
br s, ArOH), 5.95-6.04 (3 H, m, ArCH2CHCH2, H8, H8
′),
6.99 (2 H, d, J = 8.1
Hz, ArH, H3
′), 7.15 (2 H, dd, J = 8.1, 2.2
Hz, ArH, H5
′), 7.17 (2 H, d, J = 2.2 Hz,
ArH, H6
′), 7.19 (2 H, s, ArH, H3). ¹³C
NMR (125 MHz, CDCl3): δ = 39.4 (CH2,
C7, C7
′), 115.9 (CH2,
C9
′), 116.2 (Cq, C9),
117.2 (Cq, C6
′), 124.4 (Cq, C2
′),
125.4 (Cq, C2), 130.0 (CH, C5
′),
131.3 (CH, C3), 131.6 (CH, C3
′),
133.2 (Cq, C4
′), 134.0 (Cq, C4),
137.2 (CH, C8), 137.5 (CH, C8
′), 147.6
(Cq, C1), 151.4 (Cq, C1
′).
HRMS (ESI+): m/z calcd
for C27H26O3Na: 421.1774; found:
421.1768.
Analytical Data
Oil; R
f
= 0.41
(PE-EtOAc, 4:1). IR (CHCl3): νmax = 3690 (OH),
3412 (OH), 3011 (CH), 2928 (CH), 2855 (CH), 1663 (C=C),
1547 (C=C). ¹H NMR (500 MHz, CDCl3): δ = 3.36-3.45
(6 H, m, ArCH
2CHCH2),
3.88 (3 H, s, ArOCH3), 5.06-5.17 (6 H, m, ArCH2CHCH
2), 5.92-6.06 (3
H, m, ArCH2CHCH2),
6.41 (2 H, br s, ArOH), 7.00 (1 H, dd, J = 8.5,
2.5 Hz, ArH), 7.13 (1 H, d, J = 2.5
Hz, ArH), 7.15 (1 H, d, J = 2.5
Hz, ArH), 7.16 (1 H, d, J = 2.5
Hz, ArH), 7.18 (1 H, d, J = 2.0
Hz, ArH), 7.19 (1 H, d, J = 2.0
Hz, ArH), 7.23 (1 H, d, J = 2.0
Hz, ArH), 7.25 (1 H, dd, J = 8.5,
2.0 Hz, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 39.3,
39.5, 54.6, 111.6, 115.6, 116.0, 116.1, 116.4, 116.6, 117.8, 126.6, 127.0,
129.3, 129.6, 130.0, 131.0, 131.3, 132.5, 132.8, 133.6, 134.1, 137.3,
137.4, 137.6, 137.9, 147.8, 152.1, 153.6. HRMS (ESI-): m/z calcd for C28H28O3:
412.2044; found: 412.2038.