Synlett 2010(5): 777-781  
DOI: 10.1055/s-0029-1219342
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Gold(III)-Catalyzed Synthesis of Isoxazoles by Cycloisomerization of α,β-Acetylenic Oximes

C. Praveen, A. Kalyanasundaram, P. T. Perumal*
Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
Fax: +91(44)24911589; e-Mail: ptperumal@gmail.com;
Further Information

Publication History

Received 30 November 2009
Publication Date:
19 January 2010 (online)

Abstract

Cycloisomerization of α,β-acetylenic oximes leading to substituted isoxazoles was achieved using AuCl3 as catalyst, under moderate reaction conditions. The reaction can be applied to various acetylenic oximes and gives good to excellent yields. The methodology is amenable for the selective synthesis of 3-substituted, 5-substituted or 3,5-disubstituted isoxazoles by simply altering the substituents on the acetylenic oximes.

    References and Notes

  • 1a Carlsen L. Dopp D. Dopp H. Duus F. Hartman H. Lang-Fugmann S. Schulze B. Smalley RK. Wakefield BJ. In Houben-Weyl Methods of Organic Chemistry   Vol. E8a:  Schaumann E. Georg Thieme Verlag; Stuttgart, Germany: 1992.  p.45-204  
  • 1b Sperry J. Wright D. Curr. Opin. Drug Discovery Dev.  2005,  8:  723 
  • 2a Daidone G. Raffa D. Maggio B. Plescia F. Cutuli VMC. Mangano NG. Caruso A. Arch. Pharm. Pharm. Med. Chem.  1999,  332:  50 
  • 2b Tomita K. Takahi Y. Ishizuka R. Kamamura S. Nakagawa M. Ando M. Nakanishi T. Nakamura T. Udaira H. Ann. Sankyo Res. Lab.  1973,  1:  25; Chem. Abstr. 1974, 80, 120808 
  • 2c Talley JJ. Prog. Med. Chem.  1999,  13:  201 
  • 2d Talley JJ. Brown DL. Carter JS. Graneto MJ. Koboldt CM. Masferrer JL. Perkins WE. Rogers RS. Shaffer AF. Zhang YY. Zweifel BS. Seibert K. J. Med. Chem.  2000,  43:  775 
  • 2e Giovannoni MP. Vergelli C. Ghelardini C. Galeotti N. Bartolini A. Kal Piaz V.
    J. Med. Chem.  2003,  46:  1055 
  • 2f Li W.-T. Hwang D.-R. Chen C.-P. Shen C.-W. Huang C.-L. Chen T.-W. Lin C.-H. Chang Y.-L. Chang Y.-Y. Lo Y.-K. Tseng H.-Y. Lin C.-C. Song J.-S. Chen H.-C. Chen S.-J. Wu S.-H. Chen C.-T. J. Med. Chem.  2003,  46:  1706 
  • 3a Roy AK. Rajaraman B. Batra S. Tetrahedron  2004,  60:  2301 
  • 3b Wankhede KS. Vaidya VV. Sarang PS. Salunkhe MM. Trivedi GK. Tetrahedron Lett.  2008,  49:  2069 
  • 4a Takenaka K. Nakatsuka S. Tsujihara T. Koranne PS. Sasai H. Tetrahedron: Asymmetry  2008,  19:  2492 
  • 4b Koranne PS. Tsujihara T. Arai MA. Bajracharya GB. Suzuki T., Onitsuka K., Sasai H.  Tetrahedron: Asymmetry  2007,  18:  919 
  • 5a Tanaka M. Haino T. Ideta K. Kubo K. Mori A. Fukazawa Y. Tetrahedron  2007,  63:  652 
  • 5b Tanaka M. Haino T. Ideta K. Kubo K. Mori A. Fukazawa Y. Tetrahedron Lett.  2004,  45:  2277 
  • 5c Vieira AA. Bryk FR. Conte G. Bortoluzzi AJ. Gallardo H. Tetrahedron Lett.  2009,  50:  905 
  • 6a Wakefield BJ. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations   Vol. 11:  Shaumann E. Georg Thieme Verlag; Stuttgart: 2001.  p.229-288  
  • 6b Pinho e Melo TMVD. Curr. Org. Chem.  2005,  9:  925 
  • 6c Jager V. Colinas PA. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Vol. 59:  Padwa A. Wiley; Hoboken: 2002.  p.361-472  
  • 7a Tang S. He J. Sun Y. He L. She X. Org. Lett.  2009,  11:  3982 
  • 7b Bourbeau MP. Rider JT. Org. Lett.  2006,  8:  3679 
  • 7c Waldo JP. Larock RC. Org. Lett.  2005,  7:  5203 
  • 7d Waldo JP. Larock RC. J. Org. Chem.  2007,  72:  9643 
  • 7e Hansen TV. Wu P. Fokin VV. J. Org. Chem.  2005,  70:  7761 
  • 7f Girardin M. Alsabeh PG. Lauzon S. Dolman SJ. Ouellet SG. Hughes G. Org. Lett.  2009,  11:  1159 
  • 7g Lautens M. Roy A. Org. Lett.  2000,  2:  555 
  • 7h Wang K. Xiang D. Liu J. Pan W. Dong D. Org. Lett.  2008,  10:  1691 
  • 7i Himo F. Lovell T. Hilgraf R. Rostovtsev VV. Noodleman L. Sharpless KB. Fokin VV. J. Am. Chem. Soc.  2005,  127:  210 
  • 7j Grecian S. Fokin VV. Angew. Chem. Int. Ed.  2008,  47:  8285 
  • 7k Xu JP. Hamme AT. Synlett  2008,  0919 
  • For reviews of gold-catalyzed organic reactions, see:
  • 8a Hashmi ASK. Hutchings GJ. Angew. Chem. Int. Ed.  2006,  45:  7896 
  • 8b Hashmi ASK. Chem. Rev.  2007,  107:  3180 
  • 8c Amijs CHM. Ferrer C. Echavarren AM. Chem. Commun.  2007,  698 
  • 8d Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2006,  46:  3410 
  • 8e Hoffmann-Roder A. Krause N. Org. Biomol. Chem.  2005,  3:  387 
  • 8f Hashmi ASK. Angew. Chem. Int. Ed.  2005,  44, 6990 ; Angew. Chem. 2005, 117, 7150
  • 8g Núñez EJ. Echavarren AM. Chem. Commun.  2007,  333 
  • 8h Widenhoefer RA. Han X. Eur. J. Org. Chem.  2006,  4555 
  • 8i Shen HC. Tetrahedron  2008,  64:  7847 
  • 8j Shen HC. Tetrahedron  2008,  64:  3885 
  • 8k Li Z. Brouwer C. He C. Chem. Rev.  2008,  108:  3289 
  • 8l Wang M.-Z. Wong M.-K. Che C.-M. Chem. Eur. J.  2008,  14:  8353 
  • 8m Ferrer C. Amijs CHM. Echavarren AM. Chem. Eur. J.  2008,  14:  8353 
  • 8n Gorin DJ. Toste D. Nature  2007,  446:  395 
  • 8o Asao N. Synlett  2006,  1645 
  • 8p Ma S. Yu S. Gu Z. Angew. Chem. Int. Ed.  2006,  45:  200 
  • 8q Echavarren AM. Nevado C. Chem. Soc. Rev.  2004,  33:  431 
  • 8r Dyker G. Angew. Chem. Int. Ed.  2000,  39:  4237 
  • 8s Hashmi ASK. Gold Bull.  2004,  37:  51 
  • 8t Ishida T. Haruta M. Angew. Chem. Int. Ed.  2007,  46:  7154 
  • 8u Skouta R. Li C.-J. Tetrahedron  2008,  64:  4917 
  • 9 Hashmi ASK. Schwarz L. Choi J.-H. Frost TM. Angew. Chem. Int. Ed.  2000,  39:  2285 ; Angew. Chem. 2000, 112, 2382
  • 10a Debleds O. Zotto CD. Vrancken E. Campagne J.-M. Retaileau E. Adv. Synth. Catal.  2009,  351:  1991 
  • 10b Winter C. Krause N. Angew. Chem. Int. Ed.  2009,  48:  6339 
  • 10c Yeom H.-S. Lee E.-S. Shin S. Synlett  2007,  2292 
  • 11a Weyrauch JP. Hashmi ASK. Schuster A. Hengst T. Schetter S. Littmann A. Rudolph M. Hamzic M. Visus J. Rominger F. Frey W. Bats JW. Chem. Eur. J.  2009,  DOI:  10.1002/chem.200902472 
  • 11b Hashmi ASK. Rudolph M. Schymura S. Visus J. Frey W. Eur. J. Org. Chem.  2006,  4905 
  • 11c Hashmi ASK. Salathé R. Frey W. Synlett  2007,  1763 
  • 11d Hashmi ASK. Weyruch JP. Schymura W. Bats JW. Org. Lett.  2004,  6:  4391 
  • 12a Praveen C. Sagayaraj YW. Perumal PT. Tetrahedron Lett.  2009,  50:  644 
  • 12b Praveen C. Kiruthiga P. Perumal PT. Synlett  2009,  1990 
  • 12c Praveen C. Jegatheesan S. Perumal PT. Synlett  2009,  2795 
  • 12d Praveen C. Karthikeyan K. Perumal PT. Tetrahedron  2009,  65:  9244 
  • 13 Short KM. Ziegler CBJr. Tetrahedron Lett.  1993,  34:  75 
  • 14a Tohda Y. Sonogashira K. Hagihara N. Synthesis  1977,  1977 
  • 14b Lin C.-F. Lu W.-D. Wang I.-W. Wu M.-J. Synlett  2003,  2057 
  • 14c Kobayashi T. Tanaka M. J. Chem. Soc., Chem. Commun.  1981,  333 
  • 14d Mohamed Ahmed MS. Mori A. Org. Lett.  2003,  5:  3057 
  • 14e Birkofer L. Ritter A. Uhlenbrauck H. Chem. Ber.  1963,  96:  3280 
15

Synthesis of 3-Methyl-5-trimethylsilylisoxazole (3); Typical Procedure: To a solution of oxime 2n (500 mg, 3.22 mmol) in anhydrous CH2Cl2, was added AuCl3 (9.76 mg, 0.0321 mmol) under an N2 atmosphere and the solution was stirred for the specified time (Table  [²] ) at 30 ˚C. After completion of the reaction (as indicated by TLC), the reaction mixture was concentrated under reduced pressure and purified by column chromatography over silica gel (100-200 mesh) to afford pure product, 3-methyl-5-trimethylsilylisoxazole (3n) as a yellow oil; IR (neat): 3302, 2912, 1604, 1419, 1338, 1085, 885, 757 cm. ¹H NMR (500 MHz, CDCl3): δ = 0.29 [s, 9 H, Si(CH 3)3], 2.29 (s, 3 H, CH3), 6.24 (s, 1 H, isoxazolinyl-H). ¹³C NMR (125 MHz, CDCl3): δ = -1.8, 10.8, 113.5, 157.7, 177.8. MS (EI): m/z = 172 [M]+. Anal. Calcd for C7H13NOSi: C, 54.15; H, 8.44; N, 9.02. Found: C, 53.95; H, 8.47; N, 9.15.