Subscribe to RSS
DOI: 10.1055/s-0029-1219344
Synthesis of 3-Nitropyrrolidines via Dipolar Cycloaddition Reactions Using a Modular Flow Reactor
Publication History
Publication Date:
25 January 2010 (online)
Abstract
The generation and subsequent use of unstabilised azomethine ylides in dipolar cycloaddition reactions within a flow microreactor is demonstrated. The 3-nitropyrrolidines produced were furthermore subjected to chemoselective hydrogenation reactions using the H-Cube® system. To ensure product purities in excess of 90-95%, immobilised scavengers were successfully employed.
Key words
microreactor - flow chemistry - pyrrolidine - dipolar cycloaddition - solid-supported reagents
-
1a
Name
Reactions in Heterocyclic Chemistry
Li JJ. John Wiley and Sons, Inc.; Hoboken / NJ: 2005. -
1b
The Organic Chemistry
of Drug Design and Drug Action
2nd ed.:
Silverman RB. Elsevier Academic Press; New York: 2004. -
1c
Heterocyclic Chemistry
4th
ed.:
Joule JA.Mills K. Blackwell Publishing; Cambridge MA: 2008. -
1d
The Practice of
Medicinal Chemistry
3rd ed.:
Wermuth CG. Elsevier Academic Press; Burlington MA: 2008. -
2a
Ley SV.Baxendale IR. Chimia 2008, 63: 162 -
2b
Baxendale IR.Hayward JJ.Lanners S.Ley SV.Smith CD. In Microreactors in Organic Synthesis and CatalysisWirth T. Wiley-VCH; Weinheim: 2008. Chap. 4.2. p.84-122 -
2c
Baxendale IR.Hayward JJ.Ley SV.Tranmer GK. ChemMedChem 2007, 2: 768 -
2d
Baxendale IR.Pitts MR. Chem. Today 2006, 24: 41 -
3a
Sedelmeier J.Ley SV.Baxendale IR. Green Chem. 2009, 11: 683 -
3b
Baxendale IR.Ley SV.Mansfield AC.Smith CD. Angew. Chem. Int. Ed. 2009, 48: 4017 -
3c
Baxendale IR.Ley SV.Schou SC.Sedelmeier J. Chem. Eur. J. 2010, 16: 89 -
3d
Sedelmeier J.Ley SV.Baxendale IR. Green Chem. 2009, 11: 683 -
3e
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD. Org. Biomol. Chem. 2008, 6: 1587 -
3f
Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD.Tierney JP. Org. Biomol. Chem. 2008, 6: 1577 -
3g
Carter CF.Baxendale IR.O’Brien M.Pavey JBJ.Ley SV. Org. Biomol. Chem. 2009, 7: 4594 -
3h
Hornung CH.Mackley MR.Baxendale IR.Ley SV. Org. Process Res. Dev. 2007, 11: 399 -
3i
Baxendale IR.Ley SV.Smith CD.Tranmer GK. Chem. Commun. 2006, 4835 -
3j
Baxendale IR.Griffiths-Jones CM.Ley SV.Tranmer GK. Synlett 2006, 427 -
3k
Baxendale IR.Deeley J.Griffiths-Jones CM.Ley SV.Saaby S.Tranmer GK. Chem. Commun. 2006, 2566 -
4a
Kirschning A.Solodenko W.Mennecke K. Chem. Eur. J. 2006, 12: 5972 -
4b
Brandt JC.Wirth T. Beilstein J. Org. Chem. 2009, 5: 30 -
4c
Razzaq T.Glasnov TN.Kappe CO. Eur. J. Org. Chem. 2009, 1321 -
4d
Mason BP.Price KE.Steinbacher JL.Bogdan AR.McQuade DT. Chem. Rev. 2007, 107: 2300 -
4e
Hafez AM.Taggi AE.Dudding T.Lectka T. J. Am. Chem. Soc. 2001, 123: 10853 -
4f
Grant D.Dahl R.Cosford NDP. J. Org. Chem. 2008, 73: 7219 -
4g
Gustafsson T.Pontén F.Seeberger PH. Chem. Commun. 2008, 1100 -
4h
Sahoo HR.Kralj JG.Jensen KF. Angew. Chem. Int. Ed. 2007, 46: 5704 -
4i
Jähnisch K.Hessel V.Löwe H.Baerns M. Angew. Chem. Int. Ed. 2004, 43: 406 -
4j
Kulkami AA.Kalyani VS.Joshi RA.Joshi RR. Org. Process Res. Dev. 2009, 13: 999 -
4k
Hübner S.Bentrup U.Budde U.Lovis K.Dietrich T.Freitag A.Küpper L.Jähnisch K. Org. Process Res. Dev. 2009, 13: 952 -
4l
Petersen TP.Ritzén A.Ulven T. Org. Lett. 2009, 11: 5134 - 5
Baumann M.Baxendale IR.Ley SV.Smith CD.Tranmer GK. Org. Lett. 2006, 8: 5231 - 6
Baumann M.Baxendale IR.Ley SV. Synlett 2008, 2111 - 7
Smith CJ.Iglesias-Sigüenza FJ.Baxendale IR.Ley SV. Org. Biomol. Chem. 2007, 5: 2758 - 8
Smith CD.Baxendale IR.Lanners S.Hayward JJ.Smith SC.Ley SV. Org. Biomol. Chem. 2007, 5: 1559 - 9
Baxendale IR.Ley SV.Smith CD.Tamborini L.Voica A.-F. J. Comb. Chem. 2008, 10: 851 - 10
Nájera C.Sansano JM. Org. Biomol. Chem. 2009, 7: 4567 -
11a
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
11b
MacMillan DWC. Nature (London) 2008, 455: 304 -
14a
Bigotti S.Malpezzi L.Molteni M.Mele A.Panzeri W.Zanda M. Tetrahedron Lett. 2009, 50: 2540 -
14b
Wright SW.Ammirati MJ.Andrews KM.Brodeur AM.Danley DE.Doran SD.Lillquist JS.Liu S.McClure LD.McPherson RK.lson TV.Orena SJ.Parker JC.Rocke BN.Soeller WC.Soglia CB.Treadway JL.VanVolkenburg MA.Zhao Z.Cox ED. Bioorg. Med. Chem. Lett. 2007, 17: 5638 -
14c
Bucsh RA.Domagla JM.Laborde E.Sesnie JC. J. Med. Chem. 1993, 36: 4139 - 16
Nikbin N.Ladlow M.Ley SV. Org. Process Res. Dev. 2007, 11: 458 -
17a
Baxendale IR.Ley SV.Lumeras W.Nesi M. Comb. Chem. High Throughput Screening 2002, 5: 197 -
17b
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611
References and Notes
Vapourtec R2+/R4 units are available from Vapourtec Ltd, Place Farm, Ingham, Suffolk, IP31 1NQ, UK. Website: http://www.vapourtec.co.uk.
13Commercially available Omnifit® glass chromatography columns with adjustable height-end pieces(plunger). Typically, the polymer-supported reagent is placed in an appropriately sized Omnifit column®, usually 10 mm bore by 150 mm length, or shorter and the plungers are adjusted to relevant bed heights and the polymer swelled/washed with solvent. Website: http://www.omnifit.com.
15QuadraPure benzylamine (QP-BZA) is a high-loading scavenger commercially available from Reaxa. Website: http://www.reaxa.com.
18The H-Cube® flow
hydrogenator is commercially available from ThalesNano Nanotechnology
Inc., Graphisoft Park,
H-1031 Budapest, Záhony
u. 7, Hungary; Website: http://www.thalesnano.com.
MP-carbonate is a basic anion-exchange resin (3.2 mmol/g) commercially available from Biotage. Website: http://www.biotage.com.
20In a typical flow experiment stock
solutions of the alkene component (1.5 equiv, containing 1.0 equiv
TFA in MeCN) and N-(methoxymethyl)-N-(trimethylsilyl)benzylamine (1.0 equiv
in MeCN) were prepared and injected into the two individual sample
loops of the R2+ unit of the Vapourtec system. The resulting
streams were mixed in a static mixing tee and then directed into
a flow coil (10 mL volume, 1.0 mm i.d., temperature 60-120 ˚C)
mounted on the R4 unit to give residence times between 30-90
min depending on the reactivity of the substrate used. After leaving
this coil the reaction mixture was directed into a glass column
(typically 10 cm length, 10 mm bore) containing the scavenging resin (QP-BZA,
2.5 equiv and a 1 cm plug of silica). The purified product was then
collected and isolated after solvent removal.
For Experiments Involving the Use of the Fluoride Monolith
The
two starting materials were dissolved at the same concentrations
in MeCN and injected into the two corresponding sample loops of
the R2+ [alkene 1.5 mmol in MeCN and N-(methoxymethyl)-N-(trimethylsilyl)benzyl-amine
1.0 mmol in MeCN]. After mixing both streams in a T-piece
the resulting mixture was directed into the fluoride monolith (in
a column; 10 cm length, 15 mm bore, ca. 12 mmol fluoride) heated
between 50-80 ˚C with a combined flow
rate of 200 µL/min. The exiting stream was then
passed through a glass column (10 cm length, 10 mm bore) containing
the scavenging resin (QP-BZA, 2.5 equiv) for final in-line purification.
For
the chemoselective reduction of 3-nitropyrrolidines using the H-Cube® system
in full hydrogen mode the starting material was dissolved in a EtOH-EtOAc
(1:1) solvent system (0.2-0.5 M; containing catalytic amounts
of AcOH) and passed through the appropriate catalyst cartridge heated to
60 ˚C with a flow rate of 1.0 mL/min.
In order to remove the acetate counterion the out flow stream is
subsequently directed through a glass column containing 1 equiv
polymer-supported carbonate.¹9