Subscribe to RSS
DOI: 10.1055/s-0029-1219349
Regioselective Pauson-Khand Processes with Olefins Possessing Extended Phosphonates
Publication History
Publication Date:
25 January 2010 (online)

Abstract
Olefins possessing a tethered β-functionalised phosphonate functionality have been shown to be effective cyclisation partners within intermolecular Pauson-Khand processes. The optimised protocol described facilitates intermolecular cyclisations with high levels of olefinic regiocontrol.
Key words
alkyne complexes - annulations - β-functionalised phosphonates - Pauson-Khand reaction - regioselectivity
-
1a
Khand IU.Knox GR.Pauson PL.Watts WE.
J. Chem. Soc., Chem. Commun. 1971, 36: -
1b
Khand IU.Knox GR.Pauson PL.Watts WE.Foreman MI.
J. Chem. Soc., Perkin Trans. 1 1973, 977 -
2a
Pauson PL. Tetrahedron 1985, 41: 5855 -
2b
Schore NE. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1037 -
2c
Schore NE. Org. React. 1991, 40: 1 -
2d
Schore NE. In Comprehensive Organometallic Chemistry II Vol. 12:Abel EW.Stone FGA.Wilkinson G. Elsevier; New York: 1995. p.703 -
2e
Geis O.Schmalz H.-G. Angew. Chem. Int. Ed. 1998, 37: 911 -
2f
Chung YK. Coord. Chem. Rev. 1999, 188: 297 -
2g
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 -
2h
Chin CS.Won G.Chong D.Kim M.Lee H. Acc. Chem. Res. 2002, 35: 218 -
2i
Gibson SE.Mainolfi N. Angew. Chem. Int. Ed. 2005, 44: 3022 -
2j
Laschat S.Becheanu A.Bell T.Baro A. Synlett 2005, 2547 -
2k
Omae I. Appl. Organomet. Chem. 2007, 21: 318 - For examples, see:
-
3a
Mahesh KP.Fox JM. Org. Lett. 2007, 9: 5625 -
3b
Kerr WJ.McLaughlin M.Morrison AJ.Pauson PL. Org. Lett. 2001, 3: 2945 -
3c
Miller KA.Shanahan CS.Martin SF. Tetrahedron 2008, 64: 6884 -
3d
Crawford JJ.Kerr WJ.McLaughlin M.Morrison AJ.Pauson PL.Thurston GJ. Tetrahedron 2006, 62: 11360 -
3e
Furuya S.Terashima S. Tetrahedron Lett. 2003, 44: 6875 -
3f
Ishizaki M.Niimi Y.Hoshino O. Tetrahedron Lett. 2003, 44: 6029 - 4
Magnus P.Principle LM. Tetrahedron Lett. 1985, 26: 4581 -
5a
Krafft ME. J. Am. Chem. Soc. 1988, 110: 968 -
5b
Krafft ME.Juliano CA.Scott IL.Wright C.McEachin MD. J. Am. Chem. Soc. 1991, 113: 1693 -
5c
Krafft ME.Juliano CA. J. Org. Chem. 1992, 57: 5106 -
5d See also:
Krafft ME. Tetrahedron Lett. 1988, 29: 999 - 6
Brown JA.Janecki T.Kerr WJ. Synlett 2005, 2023 -
7a
Kelly SE. In Comprehensive Organic Synthesis Vol. 1:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.729 -
7b
Thirsk C.Whiting A. J. Chem. Soc., Perkin Trans. 1 2002, 999 -
7c
Wadsworth WS.Emmons WD. J. Am. Chem. Soc. 1961, 83: 1733 -
7d
Wadsworth WS.Emmons WD. Org. Synth. 1973, 5: 547 -
8a
Clarke HT. J. Chem. Soc., Trans. 1910, 97: 416 -
8b
Tõke L.Jászay ZM.Petneházy I.Clementis G.Vereczkey GD.Kövesdi I.Rockenbauer A.Kováts K. Tetrahedron 1995, 51: 9167 -
9a
Brown JA.Kerr WJ.Irvine S.Pearson CM. Org. Biomol. Chem. 2005, 3: 2396 - See also:
-
9b
Sugihara T.Yamada M.Yamaguchi M.Nishizawa M. Synlett 1999, 771 -
9c
Kerr WJ.Lindsay DM.McLaughlin M.Pauson PL. Chem. Commun. 2000, 1467 -
10a
Shambayati S.Crowe WE.Schreiber SL. Tetrahedron Lett. 1990, 31: 5289 -
10b
Jeong N.Chung YK.Lee BY.Lee SH.Yoo S.-E. Synlett 1991, 204 -
10c
Gordon AR.Johnstone C.Kerr WJ. Synlett 1995, 1083 -
10d
Donkervoort JG.Gordon AR.Johnstone C.Kerr WJ.Lange U. Tetrahedron 1996, 52: 7391 - 11
Sugihara T.Yamada M.Ban H.Yamaguchi M.Kaneko C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2801
References and Notes
General Experimental
Procedure
A 25 mL three-necked round-bottomed flask
was fitted with a condenser, flame-dried under vacuum, and allowed
to cool under nitrogen. The vessel was charged with dry MeCN (7.5 mL)
and the phosphonate ester (0.75 mmol). The reaction mixture was
heated slowly to reflux and a solution of the desired cobalt complex
(0.25 mmol) in dry MeCN (2.5 mL) was then added over 1 h via syringe
pump. Following complete addition, heating was continued at reflux
for 15 min. After this time, the reaction mixture was concentrated to
dryness, dissolved in EtOAc, and filtered through Celite to remove
cobalt residues. The filtrate was concentrated, and the crude product
was purified by silica column chromatography to yield the desired
regioisomeric cyclopentenones.
Sample
Compound Data
Compound 6e:
IR (CH2Cl2): ν = 1027,
1053, 1256, 1275, 1703, 1740 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.90
(t, 3 H, ³
J
HH = 7.2
Hz), 1.28-1.37 (m, 8 H), 1.42-1.50 (m, 2 H), 2.15-2.19
(m, 2 H), 2.50-2.53 (m, 1 H), 2.67-2.80 (m, 2
H), 2.92 (d, 2 H, ²
J
PH = 21.6
Hz), 4.09-4.19 (m, 4 H), 4.28 (dd, 1 H, ²
J
HH = 11.0
Hz, ³
J
HH = 6.3
Hz), 4.46 (dd, 1 H, ²
J
HH = 11.0
Hz, ³
J
HH = 4.0
Hz), 7.30 (m, 1 H) ppm. ¹³C NMR (100
MHz, CDCl3): δ = 207.6,
165.8 (d, ²
J
PC = 6.2
Hz), 156.5, 146.1, 64.8, 62.8 (d, ²
J
PC = 6.9
Hz), 62.7 (d, ²
J
PC = 6.7 Hz),
44.6, 34.2 (d, ¹
J
PC = 134.0
Hz), 30.8, 29.7, 24.5, 22.4, 16.34, 16.28, 13.8 ppm. ³¹P
NMR (162 MHz, CDCl3): δ = 19.41
ppm. HRMS (EI): m/z calcd for
C16H28O6P [M++H]:
347.1618; found: 347.1623.
Compound 7e: ¹H
NMR (400 MHz, CDCl3): δ = 0.92
(t, 3 H, ³
J
HH = 7.3
Hz), 1.25-1.50 (m, 10 H), 2.14-2.20 (m, 3 H), 2.59
(dd, 1 H, ²
J
HH = 18.9
Hz, ³
J
HH = 6.6
Hz), 2.99 (d, 2 H, ²
J
PH = 21.5
Hz), 3.14-3.23 (m, 1 H), 4.12-4.24 (m, 6 H), 7.23
(m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 208.0, 166.0
(d, ²
J
PC = 6.3
Hz), 156.1, 148.5, 67.3, 63.1 (d, ²
J
PC = 6.0
Hz), 38.38, 38.36, 34.5 (d, ¹
J
PC = 133.5
Hz), 30.5, 24.7, 22.6, 16.60, 16.56, 14.0 ppm. ³¹P
NMR (162 MHz, CDCl3): δ = 19.35
ppm.
The ratio of 6e/7e in the unseparated mixture was calculated from
the relative integral values of the proton NMR signals at δ = 7.30
ppm (6e) and 7.23 ppm (7e).
All other regioisomeric ratios were established in a similar fashion.
Isomer 7e was identified specifically as the 2,4-disubstituted cyclopentenone
through the use of two-dimensional NMR experiments. Firstly, HSQC
and HMBC techniques were used to determine the representative signals
for the individual proton and carbon atoms. The regiochemistry of 7e was then determined by coupling correlations
in the COSY spectrum and, specifically, with respect to the cyclopentenone
C-4 methine proton showing direct coupling interactions with the
C-3 olefinic proton, as well as the C-5 methylene unit and the O-methylene protons in the pendant side
chain. The COSY spectrum for the 2,5-isomer 6e shows no
coupling between the C-5 methine unit and the C-3 olefinic proton,
whereas the same olefinic proton in this isomer does show a coupling
interaction with the C-4 methylene unit. In all other cases (3, 4, 6a-d, 7a-d, 10, 11, 12, 13), the identity
of the specific regioisomers was established more routinely through
characteristic olefinic coupling patterns.