Subscribe to RSS
DOI: 10.1055/s-0029-1219369
A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions
Publication History
Publication Date:
08 February 2010 (online)
Abstract
Approaches to research in organic chemistry are as numerous as the reactions they describe. In this account, we describe our reactivity-based approach. Using our work in the area of gold catalysis as a background, we discuss how a focus on reaction mechanism and reactivity paradigms can lead to the rapid discovery of new synthetic tools.
1 Introduction
2 Addition Reactions
2.1 Conia-Ene Reaction
2.2 Asymmetric Hydroamination
2.3 Chiral Counteranions
2.4 Exploiting Basic Counteranions
2.5 Ring Expansion Reactions
2.6 Intramolecular Carboalkoxylation
2.7 Rationalizing the π-Acidity of Cationic Gold(I) Complexes
3 Reactions Involving Carbenoid Intermediates
3.1 1,5-Enyne Cycloisomerization
3.2 Intramolecular Addition of Dipolar Nucleophiles to Alkynes
3.3 Stereospecific Cyclopropanation
3.4 Gold-Carbon Bonding in Cationic Intermediates and Relativistic Effects
3.5 A Bonding Model for Gold(I)-Carbene Complexes
4 Further Insights into Reactivity from Gold-Catalyzed Cycloisomerization Reactions
4.1 Intramolecular Rearrangements of 1,5-Enynes
4.2 Ligand- and Substrate-Controlled Access to [2+2], [3+2], [4+2], and [4+3] Cycloadditions in Gold-Catalyzed Reactions of Allene-Enes
5 Intermolecular Annulation Reactions
5.1 A [4+3] Annulation Approach to Azepines
5.2 Orbital Considerations in [3+3] Annulations
6 Tandem Reactions
7 Conclusions
Key words
gold catalysis - enantioselective catalysis - cycloisomerizations - alkynes - allenes
- 1
Lewis GN. Science 1909, 30: 1 - For more-recent discussions relevant to this approach, see:
-
2a
Nicolaou KC.Snyder SA. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 11929 -
2b
Mohr JT.Krout MR.Stoltz BM. Nature 2008, 455: 323 -
2c
Shenvi RA.O’Malley DP.Baran PS. Acc. Chem. Res. 2009, 42: 530 -
2d
Wender PA.Verma VA.Paxton TJ.Pillow TH. Acc. Chem. Res. 2008, 41: 40 -
2e
Young IS.Baran PS. Nat. Chem. 2009, 1: 193 -
2f
Morten CJ.Byers JA.Van Dyke AR.Vilotijevic I.Jamison TF. Chem. Soc. Rev. 2009, 38: 3175 -
3a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
3b
Dick AR.Sanford MS. Tetrahedron 2006, 62: 2439 -
3c
Hartwig JF. Nature 2008, 455: 314 -
3d
Buchwald SL. Acc. Chem. Res. 2008, 41: 1439 -
3e
Sherry BD.Fürstner A. Acc. Chem. Res. 2008, 41: 1500 -
3f
Fu GC. Acc. Chem. Res. 2008, 41: 1555 -
3g
Afagh NA.Yudin AK. Angew. Chem. Int. Ed. 2010, 49: 262 -
4a
Francis MB.Jamison TF.Jacobsen EN. Curr. Opin. Chem. Biol. 1998, 2: 422 -
4b
Weber L.Illgen K.Almstetter M. Synlett 1999, 366 -
4c
Kanan MW.Rozenman MM.Sakurai K.Snyder TM.Liu DR. Nature 2004, 431: 545 -
4d
Beeler AB.Su S.Singleton CA.Porco JA. J. Am. Chem. Soc. 2007, 129: 1413 -
4e
Rozenman MM.Kanan MW.Liu DR. J. Am. Chem. Soc. 2007, 129: 14933 -
4f
Gorin DJ.Kamlet AS.Liu DR. J. Am. Chem. Soc. 2009, 131: 9189 - For selected examples that highlight this approach, see:
-
5a
Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2024 -
5b
Johnson JS.Evans DA. Acc. Chem. Res. 2000, 33: 325 -
5c
Fu GC. Acc. Chem. Res. 2000, 33: 412 -
5d
Fulton JR.Holland AW.Fox DJ.Bergman RG. Acc. Chem. Res. 2002, 35: 44 -
5e
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
5f
Saito S.Yamamoto H. Acc. Chem. Res. 2004, 37: 570 -
5g
Enders D.Neimeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
5h
MacMillan DWC. Nature 2008, 455: 304 -
5i
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 - 6
Teles JH.Brode S.Chabanas M. Angew. Chem. Int. Ed. 1998, 37: 1415 - 7
Nesmeyanov AN.Grandberg KI.Dyadchenko VP.Lemenovskii DA.Perevalova EG. Izv. Akad. Nauk SSSR, Ser. Khim. 1974, 1206 - 8
Kennedy-Smith JJ.Staben ST.Toste FD. J. Am. Chem. Soc. 2004, 126: 4526 - 9 The thermally promoted Conia-ene
reaction typically proceeds at temperatures above 200 ˚C;
for a review, see:
Conia JM.Le Perchec P. Synthesis 1975, 1 - Additional metal-promoted Conia-ene reactions; Pd-catalyzed:
-
10a
Balme G.Bouyssi D.Faure R.Gore J.Van Hemelryck B. Tetrahedron 1992, 48: 3891 - Mo-catalyzed:
-
10b
McDonald FE.Olson TC. Tetrahedron Lett. 1997, 38: 7691 - Cu-catalyzed:
-
10c
Bouyssi D.Monteiro N.Balme G. Tetrahedron Lett. 1999, 40: 1297 - Ti-mediated:
-
10d
Kitagawa O.Suzuki T.Inoue T.Watanabe Y.Taguchi T. J. Org. Chem. 1998, 63: 9470 - Hg/H+-catalyzed
-
10e
Boaventura MA.Drouin J.Conia JM. Synthesis 1983, 801 - Co/hν-catalyzed
-
10f
Renaud J.-L.Aubert C.Malacria M. Tetrahedron 1999, 55: 5113 - Ni-catalyzed
-
10g
Gao Q.Zheng B.-F.Li J.-H.Yang D. Org. Lett. 2005, 7: 2185 - Re-catalyzed
-
10h
Kuninobu Y.Kawata A.Takai K. Org. Lett. 2005, 7: 4823 - 11 A 5-endo-dig
variant of this reaction is also viable, see:
Staben ST.Kennedy-Smith JJ.Toste FD. Angew. Chem. Int. Ed. 2005, 43: 5350 - 12 For a similar study, see:
Hashmi ASK.Weyrauch JP.Frey W.Bats JW. Org. Lett. 2004, 6: 4391 -
13a
Akana JA.Bhattacharyya KX.Müller P.Sadighi JP. J. Am. Chem. Soc. 2007, 129: 7736 -
13b
Liu L.-P.Xu B.Mashuta MS.Hammond GB. J. Am. Chem. Soc. 2008, 130: 17642 -
13c
Hashmi ASK.Schuster AM.Rominger F. Angew. Chem. Int. Ed. 2009, 48: 8247 - 14 We hypothesize that the Brønsted
acid suppresses alkyne dimerization, while the Lewis acid increases
the enolic character of the keto ester, see also:
Trost BM.Sorum MT.Chan C.Harms AE.Rühter G. J. Am. Chem. Soc. 1997, 119: 698 -
15a
Staben ST.Kennedy-Smith JJ.Huang D.Corkey BK.LaLonde RL.Toste FD. Angew. Chem. Int. Ed. 2006, 45: 5991 -
15b
Corkey BK.Toste FD. J. Am. Chem. Soc. 2007, 129: 2764 - 16
Linghu X.Kennedy-Smith JJ.Toste FD. Angew. Chem. Int. Ed. 2007, 46: 7671 - For reviews of enantioselective hydroamination, see:
-
17a
Hultzsch KC. Org. Biomol. Chem. 2005, 3: 1819 -
17b
Hultzsch KC. Adv. Synth. Catal. 2005, 347: 367 - 18
LaLonde RL.Sherry BD.Kang EJ.Toste FD. J. Am. Chem. Soc. 2007, 129: 2452 - 19
Hamilton GL.Kang EJ.Miriam M.Toste FD. Science 2007, 317: 496 - 20 For another study on the gold(I)-catalyzed
asymmetric hydroalkoxylation of allenes, see:
Zhang Z.Widenhoefer RA. Angew. Chem. Int. Ed. 2007, 46: 283 - 21
LaLonde RL.Wang ZJ.Mba M.Lackner AD.Toste FD. Angew. Chem. Int. Ed. 2010, 49: 598 - 22 For a review of chiral anion mediated
asymmetric chemistry, see:
Lacour J.Hebbe-Viton V. Chem. Soc. Rev. 2003, 32: 373 - For other metal-catalyzed, chiral anion mediated asymmetric reactions, see:
-
23a
Llewellyn DB.Adamson D.Arndtsen BA. Org. Lett. 2000, 2: 4165 -
23b
Llewellyn DB.Arndtsen BA. Tetrahedron: Asymmetry 2005, 16: 1789 -
23c
Dorta R.Shimon L.Milstein D. J. Organomet. Chem. 2004, 689: 751 -
23d
Mukherjee S.List B. J. Am. Chem. Soc. 2007, 129: 11336 -
23e
Hu W.-H.Xu X.-F.Zhou J.Liu W.-J.Huang H.-X.Hu J.Yang L.-P.Gong L.-Z. J. Am. Chem. Soc. 2008, 130: 7782 -
23f
Li C.Wang C.Villa-Marcos B.Xiao J. J. Am. Chem. Soc. 2008, 130: 14450 -
23g
Li C.Villa-Marcos B.Xiao J. J. Am. Chem. Soc. 2009, 131: 6967 -
23h
Lu Y.Johnstone TC.Arndtsen BA. J. Am. Chem. Soc. 2009, 131: 11284 - 24
Ito Y.Sawamura M.Hayashi T. J. Am. Chem. Soc. 1986, 108: 6405 - 25
Melhado AD.Luparia M.Toste FD. J. Am. Chem. Soc. 2007, 129: 12638 - 26 For a racemic, silver-catalyzed
variant of this reaction, see:
Peddibhotla S.Tepe J. J. Am. Chem. Soc. 2004, 126: 12776 - 27
Müller TE.Beller M. Chem. Rev. 1998, 98: 675 - 28
Markham JP.Staben ST.Toste FD. J. Am. Chem. Soc. 2005, 127: 9708 - 29 For a review of ligand effects in
gold catalysis, see:
Gorin DJ.Sherry BD.Toste FD. Chem. Rev. 2008, 108: 3351 - 30 Theoretical calculations support
this mechanism, see:
Sordo TL.Ardura D. Eur. J. Org. Chem. 2008, 3004 - 31 For a review of 1,2-alkyl migrations
catalyzed by π-acids, see:
Crone B.Kirsch SF. Chem. Eur. J. 2008, 14: 3514 - 32
Sethofer SG.Staben ST.Hung OY.Toste FD. Org. Lett. 2008, 10: 4315 - 33
Kleinbeck F.Toste FD. J. Am. Chem. Soc. 2009, 131: 9178 - For other reports of catalytic asymmetric ring expansions, see:
-
34a
Trost BM.Yasukata T. J. Am. Chem. Soc. 2001, 123: 7162 -
34b
Trost BM.Xie J. J. Am. Chem. Soc. 2006, 128: 6044 -
34c
Trost BM.Xie J.Maulide N. J. Am. Chem. Soc. 2008, 130: 17258 - 35
Markownikoff W. Justus Liebigs Ann. Chem. 1870, 153: 228 - For related reactions, see:
-
36a
Cacchi S.Fabrizi G.Pace P. J. Org. Chem. 1998, 63: 1001 -
36b
Fürstner A.Szillat H.Stelzer F. J. Am. Chem. Soc. 2000, 122: 6785 -
36c
Shimada T.Nakamura I.Yamamoto Y. J. Am. Chem. Soc. 2004, 126: 10546 -
36d
Nakamura I.Mizushima Y.Yamamoto Y. J. Am. Chem. Soc. 2005, 127: 15022 -
36e
Nakamura I.Sato T.Yamamoto Y. Angew. Chem. Int. Ed. 2006, 45: 4473 -
36f
Istrate FM.Gagosz F. Org. Lett. 2007, 9: 3181 -
36g
Nakamura I.Yamagishi U.Song D.Konta S.Yamamoto Y. Angew. Chem. Int. Ed. 2007, 46: 2284 -
36h
Nakamura I.Sato T.Terada M.Yamamoto Y. Org. Lett. 2007, 9: 4081 -
36i
Nakamura I.Sato T.Terada M.Yamamoto Y. Org. Lett. 2008, 10: 2649 -
36j
Uemura M.Watson IDG.Katsukawa M.Toste FD. J. Am. Chem. Soc. 2009, 131: 3464 - 37
Dubé P.Toste FD. J. Am. Chem. Soc. 2006, 128: 12062 - 38 For a review of ‘memory
of chirality’, see:
Zhao H.Hsu DC.Carlier PR. Synthesis 2005, 1 - 39 For studies on the silver/copper-catalyzed
Conia-ene reaction, see:
Deng C.-L.Zou T.Wang Z.-Q.Song R.-J.Li J.-H. J. Org. Chem. 2009, 74: 412 - 40
Shapiro ND.Toste FD. Proc. Natl. Acad. Sci. U.S.A. 2008, 105: 2779 - For other reports of gold-alkyne complexes, see:
-
41a
Schulte P.Behrens U. Chem. Commun. 1998, 1633 -
41b
Flügge S.Anoop A.Goddard R.Thiel W.Fürstner A. Chem. Eur. J. 2009, 15: 8558 -
41c
See also ref. 13a. For a review, see:
-
41d
Schmidbaur H.Schier A. Organometallics 2010, 29: 2 - For similar studies, see:
-
42a
Nechaev MS.Rayón VM.Frenking G. J. Phys. Chem. A 2004, 108: 3134 -
42b
Ziegler T.Rauk A. Inorg. Chem. 1979, 18: 1558 -
42c
Hertwig RH.Koch W.Schröder D.Schwarz H.Hrušák J.Schwerdtfeger P. J. Phys. Chem. 1996, 100: 12253 -
42d
Kim CK.Lee KA.Kim CK.Lee B.Lee HW. Chem. Phys. Lett. 2004, 391: 321 -
42e
Tai H.-C.Krossing I.Seth M.Deubel DV. Organometallics 2004, 23: 2343 - 43
Luzung MR.Toste FD. J. Am. Chem. Soc. 2003, 125: 15760 - 44
Luzung MR.Markham JP.Toste FD. J. Am. Chem. Soc. 2004, 126: 10858 - For related reports, see:
-
45a
Mamane V.Gress T.Krause H.Fürstner A. J. Am. Chem. Soc. 2004, 126: 8654 -
45b
Harrak Y.Blaszykowski C.Bernard M.Cariou K.Mainetti E.Mouriés V.Dhimane A.-L.Fensterbank L.Malacria M. J. Am. Chem. Soc. 2004, 126: 8656 -
45c
Horino Y.Luzung MR.Toste FD. J. Am. Chem. Soc. 2006, 128: 11364 - For reviews on cycloisomerizations, see:
-
46a
Aubert C.Buisine O.Malacria M. Chem. Rev. 2002, 102: 813 -
46b
Trost BM.Krische MJ. Synlett 1998, 1 -
46c
Ojima I.Tzamarioudaki M.Li Z.Donovan RJ. Chem. Rev. 1996, 96: 635 - 47
Gorin DJ.Davis NR.Toste FD. J. Am. Chem. Soc. 2005, 127: 11260 - 48
Shapiro ND.Toste FD. J. Am. Chem. Soc. 2007, 129: 4160 - For reviews, see:
-
49a
Wee AGH. Curr. Org. Synth. 2006, 3: 499 -
49b
Davies HML.Beckwith REJ. Chem. Rev. 2003, 103: 2861 -
49c
Davies HML.Antoulinakis EG. Org. React. 2001, 57: 1 -
49d
Ye T.McKervey MA. Chem. Rev. 1994, 94: 1091 -
49e
Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds
Doyle MP.McKervey MA.Ye T. Wiley; New York: 1998. -
49f
Metal-Carbenes
in Organic Synthesis
Zaragoza-Dorwald F. Wiley-VCH; Weinheim Germany: 1998. - For gold-catalyzed reaction of α-diazo esters, see:
-
50a
Fructos MR.Belderrain TR.de Frémont P.Scott NM.Nolan SP.Díaz-Requejo MM.Pérez PJ. Angew. Chem. Int. Ed. 2005, 44: 5284 -
50b
Fructos MR.de Frémont P.Nolan SP.Díaz-Requejo MM.Pérez PJ. Organometallics 2006, 25: 2237 - 51
Rautenstrauch V. J. Org. Chem. 1984, 49: 950 - 52
Shi X.Gorin DJ.Toste FD. J. Am. Chem. Soc. 2005, 127: 5802 - 53
Faza ON.López CS.Álvarez R.de Lera AR. J. Am. Chem. Soc. 2006, 128: 2434 - 54
Closs GL.Moss RA. J. Am. Chem. Soc. 1964, 86: 4042 - 55
Skell PS.Woodworth RC. J. Am. Chem. Soc. 1956, 78: 4496 - 56
Johansson MJ.Gorin DJ.Staben ST.Toste FD. J. Am. Chem. Soc. 2005, 127: 18002 -
57a
Miki K.Ohe K.Uemura S. Tetrahedron Lett. 2003, 44: 2019 -
57b
Miki K.Ohe K.Uemura S. J. Org. Chem. 2003, 68: 8505 -
57c
Miki K.Uemura S.Ohe K. Chem. Lett. 2005, 34: 1068 - For a related, gold(III)-catalyzed intramolecular cyclopropanation, see:
-
57d
Fürstner A.Hannen P. Chem. Commun. 2004, 2546 - 58 For a review of enantioselective
cyclopropanation, see:
Lebel H.Marcoux J.-F.Molinaro C.Charette AB. Chem. Rev. 2003, 103: 977 - 59
Watson IDG.Ritter S.Toste FD. J. Am. Chem. Soc. 2009, 131: 2056 -
60a
Fürstner A.Szillat H.Gabor B.Mynott R. J. Am. Chem. Soc. 1998, 120: 8305 -
60b
Fürstner A.Stelzer F.Szillat H. J. Am. Chem. Soc. 2001, 123: 11863 -
60c
Nieto-Oberhuber C.Muñoz MP.Buñuel E.Nevado C.Cárdenas DJ.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 2402 -
60d
Chatani N.Kataoka K.Murai S.Furukawa N.Seki Y. J. Am. Chem. Soc. 1998, 120: 9104 - 61
Gorin DJ.Toste FD. Nature 2007, 446: 395 - 62
Pitzer KS. Acc. Chem. Res. 1979, 12: 271 - 63
Schwerdtfeger P.Boyd PDW.Burrell AK.Robinson WT.Taylor MJ. Inorg. Chem. 1990, 29: 3593 - 64
Benitez D.Shapiro ND.Tkatchouk E.Wang Y.Goddard WA.Toste FD. Nat. Chem. 2009, 1: 482 - 65
Irikura KK.Goddard WA. J. Am. Chem. Soc. 1994, 116: 8733 - 66
Landis CR.Weinhold F. J. Comput. Chem. 2007, 28: 198 - This model is highly reminiscent of the double ‘half-bond’ model proposed for rhodium-carbenoid intermediates, see:
-
67a
Snyder JP.Padwa A.Stengel T.Arduengo AJ.Jockisch A.Kim H.-L. J. Am. Chem. Soc. 2001, 123: 11318 -
67b
Costantino G.Rovito R.Macchiarulo A.Pellicciari R. J. Mol. Struct. (Theochem) 2002, 581: 111 - 68
Horino Y.Yamamoto T.Ueda K.Kuroda S.Toste FD. J. Am. Chem. Soc. 2009, 131: 2809 - 69 For a related study, see:
Lemière G.Gandon V.Cariou K.Hours A.Fukuyama T.Dhimane A.-L.Fensterbank L.Malacria M. J. Am. Chem. Soc. 2009, 131: 2993 - For related, metal-catalyzed sp³ C-H bond insertions, see:
-
70a
Bhunia S.Liu R.-S. J. Am. Chem. Soc. 2008, 130: 16488 -
70b
Lee SJ.Oh CH.Lee JH.Kim JI.Hong CS. Angew. Chem. Int. Ed. 2008, 47: 7505 -
70c
Cui L.Peng Y.Zhang L. J. Am. Chem. Soc. 2009, 131: 8394 -
70d
See also ref. 50b
- 71
Jones WD. Acc. Chem. Res. 2003, 36: 140 - 72
Lee JH.Toste FD. Angew. Chem. Int. Ed. 2007, 46: 912 - For related transformations, see:
-
73a
Zhang L.Wang S. J. Am. Chem. Soc. 2006, 128: 1442 -
73b
Funami H.Kusama H.Iwasawa N. Angew. Chem. Int. Ed. 2007, 46: 909 -
73c
Lemière G.Gandon V.Cariou K.Fukuyama T.Dhimane A.-L.Fensterbank L.Malacria M. Org. Lett. 2007, 9: 2207 - 74
Luzung MP.Mauleón P.Toste FD. J. Am. Chem. Soc. 2007, 129: 12402 - 75 For a related mechanism, see:
Zhang L. J. Am. Chem. Soc. 2005, 127: 16804 - 76
Mauleón P.Zeldin RM.González AZ.Toste FD. J. Am. Chem. Soc. 2009, 131: 6348 - For related studies, see:
-
77a
Trillo B.López F.Montserrat S.Ujaque G.Castedo L.Lledós A.Mascareñas JL. Chem. Eur. J. 2009, 15: 3336 -
77b
Alonso I.Trillo B.López F.Montserrat S.Ujaque G.Castedo L.Lledós A.Mascareñas JL. J. Am. Chem. Soc. 2009, 131: 13020 - See also:
-
78a
Lemière G.Gandon V.Agenet N.Goddard J.-P.de Kozak A.Aubert C.Fensterbank L.Malacria M. Angew. Chem. Int. Ed. 2006, 45: 7596 -
78b
Gorin DJ.Watson IDG.Toste FD. J. Am. Chem. Soc. 2008, 130: 3736 -
78c
Xia Y.Dudnik AS.Gevorgyan V.Li Y. J. Am. Chem. Soc. 2008, 130: 6940 - 79
González AZ.Toste FD. Org. Lett. 2010, 12: 200 - 80
Benitez D.Tkatchouk E.Gonzalez A.Goddard WA.Toste FD. Org. Lett. 2009, 11: 4798 -
81a
Amijs CHM.López-Carrillo V.Echavarren AM. Org. Lett. 2007, 9: 4021 -
81b
Leseurre L.Toullec PY.Genêt J.-P.Michelet V. Org. Lett. 2007, 9: 4049 - 82
Nieto-Oberhuber C.López S.Echavarren AM. J. Am. Chem. Soc. 2005, 127: 6178 - 83
Witham CA.Mauleón P.Shapiro ND.Sherry BD.Toste FD. J. Am. Chem. Soc. 2007, 129: 5838 -
84a
Nieto-Oberhuber C.Muñoz MP.López S.Jiménez-Núñez E.Nevado C.Herrero-Gómez E.Raducan M.Echavarren AM. Chem. Eur. J. 2006, 12: 1677 -
84b
Nieto-Oberhuber C.López S.Muñoz MP.Jiménez-Núñez E.Bunuel E.Cárdenas DJ.Echavarren AM. Chem. Eur. J. 2006, 12: 1694 -
84c
López S.Herrero-Gómez E.Pérez-Galán P.Nieto-Oberhuber C.Echavarren AM. Angew. Chem. Int. Ed. 2006, 45: 6029 - For related, gold-catalyzed intermolecular annulations, see:
-
85a
Asao N.Takahashi K.Lee S.Kasahara T.Yamamoto Y. J. Am. Chem. Soc. 2002, 124: 12650 -
85b
Kusama H.Miyashita Y.Takaya J.Iwasawa N. Org. Lett. 2006, 8: 289 -
85c
Zhang G.Huang X.Li G.Zhang L. J. Am. Chem. Soc. 2008, 130: 1814 -
85d
Zhang G.Zhang L. J. Am. Chem. Soc. 2008, 130: 12598 -
86a
Doyle MP.Hu W.Timmons DJ. Org. Lett. 2001, 3: 3741 -
86b
Doyle MP.Yan M.Hu W.Gronenberg LS. J. Am. Chem. Soc. 2003, 125: 4692 -
86c
Davies HML.Hu B.Saikali E.Bruzinski PR. J. Org. Chem. 1994, 59: 4535 - For related reactions of Fischer carbenes, see:
-
86d
Barluenga J.Tomás M.Ballesteros A.Santamaria J.Carbajo RJ.López-Ortiz F.Garcia-Granda S.Pertierra P. Chem. Eur. J. 1996, 2: 88 -
86e
Barluenga J.Tomás M.Rubio E.López-Pelegrín JA.García-Granda S.Priede MP. J. Am. Chem. Soc. 1999, 121: 3065 -
87a
Hashmi ASK.Weyrauch JP.Rudolph M.Kurpejović E. Angew. Chem. Int. Ed. 2004, 43: 6545 -
87b
Hashmi ASK.Kurpejović E.Wölfle M.Frey W.Bats JW. Adv. Synth. Catal. 2007, 349: 1743 - 88
Shapiro ND.Toste FD. J. Am. Chem. Soc. 2008, 130: 9244 - 89
Hansch C.Leo A.Taft RW. Chem. Rev. 1991, 91: 165 -
90a
Barluenga J.Rodrígues F.Fañanás FJ.Flórez J. Top. Organomet. Chem. 2004, 13: 59 -
90b
Barluenga J.Santamaría J.Tomás M. Chem. Rev. 2004, 104: 2259 -
90c
Sierra MA.Fernández I.Cossío FP. Chem. Commun. 2008, 4671 -
91a
Carbene Chemistry: From Fleeting Intermediates
to Powerful Reagents
Bertrand G. Marcel Dekker; New York: 2002. -
91b
Moss RA.Platz MS.Jones M. Reactive Intermediate Chemistry Wiley-Interscience; Hoboken / NJ: 2004. - 92 Nucleophilic singlet vinylcarbenes
react as three-carbon units in cycloadditions with olefins, see:
Boger DL.Wysocki RJ. J. Org. Chem. 1988, 53: 3408 -
93a
Hoffmann R.Zeiss GD.Van Dine GW. J. Am. Chem. Soc. 1968, 90: 1485 -
93b
Davis JH.Goddard WA.Bergman RG. J. Am. Chem. Soc. 1977, 99: 2427 -
93c
Sevin A.Arnaud-Danon L. J. Org. Chem. 1981, 46: 2346 -
93d
Yoshimine M.Pacansky J.Honjou N. J. Am. Chem. Soc. 1989, 111: 2785 - 94
Shapiro ND.Shi Y.Toste FD. J. Am. Chem. Soc. 2009, 131: 11654 - 95
Walji AM.MacMillan DWC. Synlett 2007, 1477 - 96
Gorin DJ.Dubé P.Toste FD. J. Am. Chem. Soc. 2006, 128: 14480 -
97a
Reetz MT.Sommer K. Eur. J. Org. Chem. 2003, 3485 -
97b
Shi Z.He C. J. Org. Chem. 2004, 69: 3669 -
97c
Tarselli MA.Liu A.Gagne MR. Tetrahedron 2009, 65: 1785 - 98
Sherry BD.Toste FD. J. Am. Chem. Soc. 2004, 126: 15978 - 99
Sherry BD.Maus L.Laforteza BN.Toste FD. J. Am. Chem. Soc. 2006, 128: 8132 - 100
Mauleón P.Krinsky JL.Toste FD. J. Am. Chem. Soc. 2009, 131: 4513