Subscribe to RSS
DOI: 10.1055/s-0029-1219377
Synthesis of (+)-Kuraramine
Publication History
Publication Date:
08 February 2010 (online)
Abstract
The first synthesis of (+)-kuraramine via oxidative cleavage of (-)-N-methylcytisine is reported. An alternative but unsuccessful approach to (+)-kuraramine is also described based on extending an intramolecular enolate addition protocol that had previously been applied successfully to cytisine.
Key words
cytisine - kuraramine - alkaloids
- Supporting Information for this article is available online:
- Supporting Information
- 1 For a review of the lupin alkaloids,
see:
Leonard NJ. In The Alkaloids: Chemistry and Physiology Vol. 3:Manske RHF.Holmes HL. Academic Press; New York: 1953. p.119-192 - 2 For a review of the synthetic routes
to cytisine, see:
Stead D.O’Brien P. Tetrahedron 2007, 63: 1885 - For an overview of the pharmacology of cytisine, see:
-
3a
Cassels BK.Bermudez I.Dajas F.Abin-Carriquiry JA.Wonnacott S. Drug Discovery Today 2005, 10: 1657 -
3b
Marks MJ.Whiteaker P.Collins AC. Mol. Pharmacol. 2006, 70: 947 -
3c
Luetje CW.Patrick J. J. Neurosci. 1991, 11: 837 - 4
Power FB.Salway AH. J. Chem. Soc. 1913, 191 - 5
Murakoshi I.Kidoguchi E.Haginiwa J.Ohmiya S.Higashiyama K.Otomasu H. Phytochemistry 1981, 20: 1407 - 6
Honda T.Takahashi R.Namiki H. J. Org. Chem. 2005, 70: 499 - 7
Rouden J.Ragot A.Gouault S.Cahard D.Plaquevent JC.Lasne MC. Tetrahedron: Asymmetry 2002, 13: 1299 -
8a
Houllier N.Gouault S.Lasne MC.Rouden J. Tetrahedron 2006, 62: 11679 -
8b
Chellappan SK.Xiao YX.Tueckmantel W.Kellar KJ.Kozikowski AP.
J. Med. Chem. 2006, 49: 2673 -
10a
Fleming I.Henning R.Plaut H. J. Chem. Soc., Chem. Commun. 1984, 29 -
10b
Fleming I.Sanderson PEJ. Tetrahedron Lett. 1987, 28: 4229 -
10c
Tamao K.Ishida N.Kumada M. J. Org. Chem. 1983, 48: 2120 -
10d
Tamao K.Ishida N.Tanaka T.Kumada M. Organometallics 1983, 2: 1694 -
10e For a review on the oxidation
of carbon-silicon bonds, see:
Jones GR.Landais Y. Tetrahedron 1996, 52: 7599 -
12a
Gray D.Gallagher T. Angew. Chem. Int. Ed. 2006, 45: 2419 -
12b
Botuha C.Galley CMS.Gallagher T. Org. Biomol. Chem. 2004, 2: 1825 -
14a
Katritzky AR.Arrowsmith J.Binbahari Z.Jayaram C.Siddiqui T.Vassilatos S. J. Chem. Soc., Perkin Trans. 1 1980, 2851 -
14b
Meghani P.Joule J. J. Chem. Soc., Perkin Trans. 1 1988, 1
References and Notes
For silane 4, the key NMR signals [¹H NMR (500 MHz, CDCl3): δ = 4.34 (1 H, d, J = 1.0 Hz, H10) and ¹³C NMR (126 MHz, CDCl3): δ = 54.2 (C10)] showed the presence of a single diastereomer. The small coupling constant (J = 1.0 Hz) suggested an equatorial-equatorial coupling between H9 and H10. The equatorial assignment of H10 was further supported by NOE data: irradiation of H10 showed enhancements of H9, H11 and SiCH3, while irradiation of H8ax and H8eq showed no enhancement associated with H10.
11For carbinol 5, the key NMR signal [¹H NMR (400 MHz, CDCl3): δ = 5.80 (1 H, s, H10)] showed the presence of a single diastereomer and suggested the same (likely thermodynamic) stereochemical preference as silane 4.
13Key NMR signals for aldehyde 9: ¹H NMR (400 MHz, CDCl3): δ = 9.63 (1 H, s, H10). ¹³C NMR (101 MHz, CDCl3): δ = 200.3 (C10).
15Supporting Information (as a pdf) is available with this paper and contains full experimental details of all compounds reported and copies of spectra, including NOE experiments.