RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219379
(1R,5R)-1-(1′-Dimethylaminoethyl)-2-isopropylidene-5-methylcyclohexanol as a Chiral Ligand in the Enantioselective Addition of Diethylzinc to Aldehydes
Publikationsverlauf
Publikationsdatum:
08. Februar 2010 (online)
Abstract
An efficient chiral ligand, (1R,5R)-1-(1′-dimethylaminoethyl)-2-isopropylidene-5-methylcyclohexanol, has been developed for the enantioselective addition of diethylzinc to some prochiral aldehydes to afford S-alcohols. The overall conversion rate was 80-98% with excellent enantiomeric excess (79-98%).
Key words
ionic liquid - intermolecular reductive coupling - prochiral aldehydes - chiral ligand - enantioselectivity
-
1a
Noyori R.Kitamura M. Angew. Chem., Int. Ed. Engl. 1991, 30: 49 -
1b
Soai K.Niwa S. Chem. Rev. 1992, 92: 833 -
1c
Pu L.Yu HB. Chem. Rev. 2001, 101: 757 -
1d
Zhu HJ.Jiang JX.Ren J.Yan YM.Pittman CU. Curr. Org. Synth. 2005, 2: 547 -
1e
Hatano M.Miyamoto T.Ishihara K. Curr. Org. Chem. 2007, 11: 127 -
2a
Kitamura M.Suga S.Kawai K.Noyori R. J. Am. Chem. Soc. 1986, 108: 6071 -
2b
Cho BT.Chun YS. Tetrahedron: Asymmetry 1998, 9: 1489 -
2c
Joshi SN.Malhotra SV. Tetrahedron: Asymmetry 2003, 14: 1763 -
2d
Parrott RW.Hitchcock SR. Tetrahedron: Asymmetry 2008, 19: 19 ; and references cited therein -
2e
Sachi P.Dabiri M.Kozehgary G.Heydari S. Synth. Commun. 2009, 39: 2575 -
2f
Binder C.Bautista A.Zaidlewicz M.Kizeminski MP.Oliver A.Singaram B. J. Org. Chem. 2009, 74: 2337 ; and references cited therein -
2g
Ichikawa Y.Yamamoto S.Kotsuki H.Nokano K. Synlett 2009, 2281 ; and references cited therein -
3a
Anderson JC.Harding M. Chem. Commun. 1998, 393 -
3b
Tseng SL.Yang TK. Tetrahedron: Asymmetry 2005, 16: 773 -
3c
Tseng SL.Yang TK. Tetrahedron: Asymmetry 2004, 15: 3375 -
4a
Chelucci G.Conti S.Falorni M.Giacomelli G. Tetrahedron 1991, 47: 8251 -
4b
Weselinski L.Stephiak P.Jurczak J. Synlett 2009, 2261 ; and references cited therein -
5a
Cardellicchio C.Ciccarella G.Naso F.Perna F.Tortorella P. Tetrahedron 1999, 55: 14685 -
5b
Liu DX.Zhang LC.Wang Q.Da C S.Xin ZQ.Wang R.Choi CKM.Chan ASC. Org. Lett. 2001, 3: 2733 ; and references cited therein -
5c
Yand X.Hirose T.Zhang G. Tetrahedron: Asymmetry 2008, 19: 1670 ; and references cited therein -
6a
Bolm C.Zehnder M.Bur D. Angew. Chem., Int. Ed. Engl. 1990, 29: 205 -
6b
Cheng YQ.Zheng B.Kang CQ.Guo HQ.Gao LX. Tetrahedron: Asymmetry 2008, 19: 1572 -
7a
Palmieri G. Tetrahedron: Asymmetry 2000, 11: 3361 -
7b
Yang XF.Wang ZH.Koshizawa T.Yasutake M.Zhang GY.Hirose T. Tetrahedron: Asymmetry 2007, 18: 1257 -
8a
Yang XW.Sheng JH.Da C S.Wang HS.Su W.Wang R.Chan ASC. J. Org. Chem. 2000, 65: 295 -
8b
Guo S.Judesh ZMA. Tetrahedron Lett. 2009, 50: 281 -
9a
Chiral
Auxilliaries and Ligands in Asymmetric Synthesis
Seyden JP. John Wiley and Sons; New York: 1995. -
9b
Blaser HU. Chem. Rev. 1992, 92: 935 -
9c
Dabiri M.Salehi P.Kozehgary G.Heydari S.Heydari A.Esfandyari M. Tetrahedron: Asymmetry 2008, 19: 1970 -
10a
Zhang FY.Chan ASC. Tetrahedron: Asymmetry 1997, 8: 3651 -
10b
Hwang CD.Uang BJ. Tetrahedron: Asymmetry 1998, 9: 3979 -
10c
Dean MA.Hitchcock SR. Tetrahedron: Asymmetry 2008, 19: 2563 ; and references cited therein - 12 1-Butyl-3-methylimidazolium tetrafluoroborate
was synthesized according to the reported method, see:
Palimkar SS.Siddiqui SA.Daniel T.Lahoti RJ.Srinivasan KV. J. Org. Chem. 2003, 68: 9371 - 13
Hesse G.Hagel R. Chromatographia 1976, 9: 62 - 15
Kitamura M.Okada S.Noyori R. J. Am. Chem. Soc. 1989, 111: 4028 - 16
Picard RH.Kenyon J. J. Chem. Soc. 1914, 1115 - 17
Sato T.Gotoh Y.Wakebayashi Y.Fugisawe T. Tetrahedron Lett. 1983, 24: 4123 - 18
Smaardijk AA.Wynberg H. J. Org. Chem. 1987, 52: 135 - 19
Capillon J.Guette J. Tetrahedron 1979, 35: 1817 - 20
Mukaiyama T.Hojo K. Chem. Lett. 1976, 893
References and Notes
Typical Experimental
Procedure for Preparative-Scale Electrosynthesis
The
electrolysis was carried out in a double-walled cell (Metrohm, 100
ml) equipped with cover glass inlet and outlet, thermometer, and
magnetic stirrer. This cell was divided by a medium-porosity glass
frit into two separate compartments. The catholyte was a 10 mL mixture
of [BMIM]BF4-i-PrOH
(9:1) containing 0.03 M (R)-(+)-pulegone
and 0.04 M of MeCN. The anolyte was 5 mL of [BMIM]BF4-i-PrOH (9:1). A smooth copper foil (1 × 1
cm) was used as a cathode and a platinum foil (1 × 1
cm) was used as an anode. Nitrogen gas was bubbled for 10 min and the
electroreductive coupling was carried out by passing current 0.1
A for the time corresponding to charge-transfer equivalent to 1.1
F/mol.
The catholyte was extracted with EtOAc
(3 × 10 mL), the extract dried over anhyd
MgSO4, filtered, and the solvent was removed by distillation
under reduced pressure. The product so obtained was purified by
chromatography on a swollen triacetyl cellulose(microcrystalline)
column, and elution was performed by EtOH to afford 1a in
pure form in 70% yield. R
f
= 0.55 (hexane-EtOAc,
10:1). IR (neat): ν = 3460, 1700, 1640, 880 cm-¹. ¹H
NMR (300 MHz, CDCl3):
δ = 1.05
(d, 3 H, J = 6.5
Hz, CH3) 1.28 (m, 2 H, CH2), 1.60 (m, 1 H,
CH), 1.65 (m, 2 H, CH2), 1.70 (s, 6 H, 2 × CH3), 1.95
(m, 2 H, CH2), 2.10 (s, 3 H, COCH3), 3.80
(s, 1 H, OH). ¹³C NMR (75 MHz, CDCl3): δ = 14.60,
19.20, 20.50, 21.60, 25.60, 38.40, 42.40, 92.50, 125.30, 142.70,
207.10. Anal. Calcd for C12H20O2:
C, 73.41; H, 10.27. Found: C, 73.62; H, 10.12.
Compound 1a was heated to reflux with O-methyloxime hydrochloride in the presence of 0.03 M Et3N in EtOH. Removal of the solvent gave the oximated product which, upon lithium aluminium hydride reduction, afforded compound 1d in 90% yield. Compound 1d, when refluxed with 2 mol of MeI resulted in the desired chiral ligand 1e in 95% yield; bp 150-153 ˚C (67 mbar); R f = 0.4 (hexane-EtOAc, 1:1). IR (neat): ν = 3855, 2780, 1645, 886 cm-¹. ¹H NMR (300 MHz, CDCl3): δ = 1.05 (d, 3 H, J = 6.5 Hz, CH3), 1.12 (d, 3 H, J = 7.1 Hz, CH3), 1.30-1.42 (m, 4 H, 2 × CH2), 1.62 (m, 1 H, CH), 1.75 (m, 6 H, 2 × CH3), 1.95 (m, 2 H, CH2), 2.30 (s, 6 H, 2 × CH3), 2.95 [q, 1 H, J = 7.1 Hz, CHN(CH3)2], 3.85 (s, 1 H, OH). ¹³C NMR (75 MHz, CDCl3): δ = 12.10, 19.20, 20.60, 22.40, 26.20, 37.25, 39.50, 44.15, 66.50, 78.30, 125.20, 142.70. Anal. Calcd for C14H27ON: C, 74.59; H, 12.08; N, 6.21. Found: C, 74.43; H, 11.84; N, 5.96.
21
Representative
Spectroscopic Data(
S
)-1-phenylpropan-1-ol (4a)
Bp
94-95 (13.3 mbar); R
f
= 0.35 (hexane-EtOAc,
8:2). IR (neat): ν = 3400, 3020, 2990, 1600, 1100
cm-¹. ¹H NMR (300
MHz, CDCl3): δ = 0.90 (t, J = 6.0 Hz,
3 H, CH3), 1.40-1.55 (m, 2 H, CH2CH3),
3.60 (br s, 1 H, OH), 4.50 (t, J = 7.0 Hz,
1 H, CHOH), 7.10-7.40 (m, 5 H, ArH). ¹³C
NMR (75 MHz, CDCl3): δ = 11.10, 33.10,
78.20, 124.60, 128.40, 128.80, 139.20. Anal. Calcd for C9H12O:
C, 79.36; H, 8.88. Found: C, 79.55; H, 8.70.
(
S
)-3-Nonanol (4e)
Bp 192-194 ˚C; R
f
= 0.40
(hexane-EtOAc, 8:2). IR (neat):
ν = 3600,
2970, 1350, 1100 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 0.90 (t, J = 6.0 Hz,
3 H, CH3), 0.95 (t, J = 6.0 Hz,
3 H, CH3), 1.20-1.62 (m, 12 H, 6 × CH2),
2.20 (br s, 1 H, OH), 3.25 (t, J = 7.0
Hz, 1 H, CHOH). ¹³C NMR (75 MHz, CDCl3): δ = 11.00,
15.30, 22.40, 25.20, 29.80, 30.60, 33.10, 38.40, 75.50. Anal. Calcd
for C9H20O: C, 74.92; H, 13.98. Found: C,
74.75; H, 13.80.