Subscribe to RSS
DOI: 10.1055/s-0029-1219393
Synthesis of Thioureido-Linked Peptidomimetics, Glycosylated Amino Acids, and Neoglycoconjugates Using Bis(benzotriazolyl)methanethione as Thioacylating Agent
Publication History
Publication Date:
18 February 2010 (online)
Abstract
A practical synthesis of thiourea-linked peptidomimetics, glycosylated amino acids, and neoglycoconjugates is described employing bis(benzotriazolyl)methanethione as thiocarbonylating reagent. The entire protocol is mild, efficient, high-yielding, and free from hazardous reagents. All the intermediates and products have been isolated and fully characterized by ¹H NMR, ¹³C NMR, and mass spectrometry.
Key words
peptidomimetics - isothiocyanates - thioureidopeptides - pseudoglycoconjugates
-
1a
Synthesis
of Peptides and Peptidomimetics (Houben-Weyl)
Vol. E22c:
Goodman M.Felix A.Moroder L.Toniolo C. Thieme; Stuttgart: 2003; and references cited therein -
1b
Davis BG. Chem. Rev. 2002, 102: 579 ; and references cited therein - 2
Sureshbabu VV.Patil BS.Venkataramanarao R. J. Org. Chem. 2006, 71: 7697 ; and references cited therein - 3
Moree WJ.van der Marel GA.Liskamp RJ. J. Org. Chem. 1995, 60: 5157 - 4
Gustafson GL.Gander JE. Methods Enzymol. 1984, 107: 172 - 5
Cho CY.Moran EJ.Cherry SR.Stephans JC.Fodor SPA.Adams CL.Sundaram A.Jacobs JW.Schultz PG. Science 1993, 261: 1303 -
6a
Sureshbabu VV.Hemantha HP.Naik SA. Tetrahedron Lett. 2008, 49: 5133 -
6b
Wipf P.Venkatraman S. J. Org. Chem. 1996, 61: 8004 -
6c
Angell YL.Burgess K. Chem. Soc. Rev. 2007, 36: 1674 -
6d
Hitotsuyanagi Y.Motegi S.Fukaya S.Takeya K.
J. Org. Chem. 2002, 67: 3266 -
7a
Nowick JS. Acc. Chem. Res. 2008, 41: 1319 -
7b
Lam PY.Jadhav PK.Eyermann CJ.Hodge CN.Ru Y.Bacheler LT.Meek JL.Otto MJ.Rayner MM.Wong YN.Chang C.-H.Weber PC.Jackson DA.Sharpe TR.Erickson-Viitanen S. Science 1994, 263: 380 - 8
Blanco JLJ.Benito JM.Meiiet CO.Fernandez JMG. Org. Lett. 1999, 1: 1217 ; and references cited therein - 9
Tobe Y.Sasaki S.-I.Hirose K.Naemura K. Tetrahedron Lett. 1997, 38: 4791 - 10
Chalina EG.Chakarova L. Eur. J. Med. Chem. 1998, 33: 975 -
11a
Todoulou OG.Papadaki-Valiraki AE.Filippatos EC.Ikeda S.De Clercq E. Eur. J. Med. Chem. 1994, 29: 127 -
11b
Bloom JD.Dushin RG.Curran KJ.Donahue F.Norton EB.Terefenko E.Jones TR.Ross AA.Feld B.Lang SA.DiGrandi MJ. Bioorg. Med. Chem. Lett. 2004, 14: 3401 -
12a
Zhang Y.Talalay P. Cancer Res. 1994, 54: 1976 -
12b
Shusheng Z.Tianrong Z.Kun C.Youfeng X.Bo Y. Eur. J. Med. Chem. 2008, 43: 2778 - 13
Ren J.Diprose J.Warren J.Esnouf RM.Bird LE.Ikemizu S.Slater M.Milton J.Balzarini J.Stuart DI.Stammers DK. J. Biol. Chem. 2000, 275: 5633 - 14
Walpole C.Ko SY.Brown M.Beattie D.Campbell E.Dickenson F.Ewan S.Hughes GA.Lemaire M.Lerpiniere J.Patel S.Urban L. J. Med. Chem. 1998, 41: 3159 - 15
Liav A.Angala SK.Brennan PJ. Synth. Commun. 2008, 38: 1176 -
16a
Rodriguez-Lucena D.Benito J.Ortiz Mellet C.Garcia Fernandez JM. Chem. Commun. 2007, 831 -
16b
Lindhorst TK.Kieburg C. Angew. Chem., Int. Ed. Engl. 1996, 35: 1953 - 17
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 - 18
Blanco JLJ.Bootello P.Benito JM.Mellet CO.Fernández JMG. J. Org. Chem. 2006, 71: 5136 - 19
Blanco JLJ.Bootello P.Gallego RG.Mellet CO.Fernandez JMG. Synthesis 2007, 2545 - 20
Neville RG.McGee JJ. Can. J. Chem. 1963, 41: 2123 - 21
Guy RG.Patai S. The Chemistry of Cyanide and Their Thio Derivatives Part 2: Wiley; New York: 1977. p.823 - 22
Hodgkissi JE.Ettlixger MG. J. Org. Chem. 1956, 21: 404 - 23
Dogadkin BA.Pavlov NN. Dokl. Akad. Nauk. SSSR 1961, 138: 1111 - 24
Tamura Y.Adachi M.Kawasaki T.Kita Y. Tetrahedron Lett. 1978, 19: 1753 - 25
Wong R.Dolman SJ. J. Org. Chem. 2007, 72: 3969 - 26
Mohanta PK.Dhar S.Samal SK.Ila H.Junjappa H. Tetrahedron 2000, 56: 629 - 27
Kim S.Yi KY. Tetrahedron Lett. 1985, 26: 1661 - 28
Chang H.Kim S. Bull. Korean Chem. Soc. 1986, 7: 407 - 29
Kim S.Yi KY. J. Org. Chem. 1986, 51: 2613 - 30
Larsen C.Steliou K.Harpp DN. J. Org. Chem. 1978, 43: 337 - 31
Katritzky AR.Ledoux S.Witek RM.Nair SK.
J. Org. Chem. 2004, 69: 2976 - 32
Birkofer P.Richter P.Ritter A. Chem. Ber. 1960, 93: 2804 - 33
Rodriguez M.Linares M.Doulut S.Heitz A.Martinez J. Tetrahedron Lett. 1991, 32: 923 - 34
Mondal S.Fan E. Synlett 2006, 306 - 35
Boeijen A.Ameijde JV.Liskamp RMJ. J. Org. Chem. 2001, 66: 8454 - 36
Pal B.Jaisankar P.Giri VS. Synth. Commun. 2004, 34: 1317 - 37
Jarvinen AJ.Cerrada-Gimenez M.Grigorenko NA.Khomutov AR.Vepsalainen JJ.Sinervirta RM.Keinanen TA.Alhonen LI.Janne JE. J. Med. Chem. 2006, 49: 399 - 39
Ichikawa Y.Ohara F.Kotsuki H.Nakano K. Org. Lett. 2006, 8: 5009 - 40
Deng S.Gangadharmath U.Chang CT. J. Org. Chem. 2006, 71: 5179 - 41
Wang M.Gould SJ. J. Org. Chem. 1993, 58: 5176 - 42
Zhang L.-H.Kauffman GS.Pesti JA.Yin J. J. Org. Chem. 1997, 62: 6918
References and Notes
The absence of racemization during
the course of the reaction was verified through ¹H
NMR analysis of the unsymmetrical thioureas prepared by the reaction
of N
β
-Fmoc-Phe-ψ[NHCSNH] with
optically pure (R)- and
(S)-1-phenylethylamine. The methyl protons
of the phenylethylamine moiety in N
β-Fmoc-Phe-ψ[NHCSNH]-(R)-(+)-1-phenylethylamine and N
β-Fmoc-Phe-ψ[NHCSNH]-(S)-(-)-1-phenylethylamine were
observed as distinct doublets at δ = 1.30, 1.32
ppm and δ = 1.29, 1.31 ppm, respectively. For N
β-Fmoc-Phe-ψ[NHCSNH]-(R,S)-(±)-1-phenylethylamine,
the corresponding methyl resonances were observed as two doublets
at δ = 1.32, 1.30 ppm and δ = 1.31,
1.29 ppm. This clearly showed that there was no formation of an
epimeric mixture (absence of two CH3 doublets when optically
pure phenylethylamine was coupled) during the reaction.
General Procedure
for the Preparation of 3, 5, or 8
To a solution N
β-Fmoc/Boc/Z-amino
alkyl amine 2 (1.0 mmol), amino acid ester 4, and O-protected β-glycosyl amine 7 (1.0 mmol) in CH2Cl2 (10
mL), Bt-CS-Bt 1 (1.0 mmol) was added at
r.t., and the reaction mixture was stirred overnight. After the
completion of reaction (as monitored by TLC), it was diluted with
CH2Cl2, the organic layer was washed with
10% NaHCO3 (to remove benzotriazole byproduct),
brine, and dried over anhyd Na2SO4. The solvent was
removed under reduced pressure to afford 3, 5, or 8 which
were recrystallized from CH2Cl2-n-hexane.
General
Procedure for the Preparation of 6a-i, 10a-c, and
11a-d
To a stirring solution of 3, 5, or 8 (1.0 mmol) in CH2Cl2 (10 mL)
was added amino-free amino acid ester (1.0 mmol), or O-protected β-glycosyl
amine (1.0 mmol), or N
α-Cbz-β-amino-l-alanine methyl ester (1.0 mmol) followed
by the addition of DIPEA (1.0 mmol) at r.t. The mixtrue was stirred for
about 5-6 h until completion (TLC analysis). The solvent was
removed in vacuo, and the residue was taken into EtOAc. The organic
layer was washed with 10% citric acid solution, NaHCO3 (10%)
solution, brine, and dried over anhyd Na2SO4.
The solvent was removed under reduced pressure and the residue recrystallized
from CH2Cl2-
n-hexane to afford the title compounds.
Fmoc-β-Ile-ψ[NH-CS-NH]-β-Ala-OMe
(6a)
¹H NMR (400 MHz, CDCl3): δ = 0.83-0.96
(m, 6 H), 1.25 (m, 2 H), 2.00 (m, 2 H), 2.35 (t, J = 8.0
Hz, 2 H), 3.37 (t, J = 8.0
Hz, 2 H), 3.56 (s, 3 H), 3.67 (m, 2 H), 3.81 (m, 1 H), 4.18 (m,
1 H), 4.37 (m, 2 H), 5.35 (br, 1 H), 6.84 (br, 1 H), 7.31-7.76
(m, 8 H). ¹³C NMR (100 MHz, CDCl3): δ = 12.1, 15.9,
25.8, 30.9, 33.9, 37.8, 40.1, 47.6, 52.3, 56.4, 67.5, 125.6, 125.7,
127.6, 128.2, 141.7, 144.2, 158.0, 173.5, 183.1 HRMS: m/z calcd for C26H33N3O4S:
506.2089 [M + Na]; found: 506.2079 [M + Na].
Z
-β-Cys(Bz
I)-ψ[NH-CS-NH]-
β
-Leu-OMe
(6e)
¹H NMR (400 MHz, CDCl3): δ = 0.98
(d, J = 6.8
Hz, 6 H), 1.23 (m, 2 H), 1.76 (m, 1 H), 2.40 (m, 2 H), 2.53-2.67
(m, 2 H), 3.35 (m, 1 H), 3.47 (m, 1 H), 3.77 (m, 3 H), 3.89-3.99 (m,
4 H), 5.04 (s, 2 H), 5.04 (s, 2 H), 5.30 (br, 1 H), 7.23-7.33
(m, 10 H). ¹³C NMR (100 MHz, CDCl3): δ = 21.9,
22.6, 23.0, 25.2, 34.1, 36.9, 44.5, 44.6, 49.6, 55.4, 55.6, 67.3, 127.7,
128.4, 128.6, 128.9, 129.6, 136.9, 137.1, 138.1, 156.7, 175.1, 183.8:
HRMS: m/z calcd for C27H37N3O4S2Na: 554.2123 [M + Na];
found: 554.2119 [M + Na]
OMe-Phe-[NH-CS-NH]-Val-OMe
(6g)
¹H NMR (400 MHz, CDCl3): δ = 0.95
(d, J = 7.6
Hz, 6 H), 2.23 (m, 1 H), 3.12 (m, 2 H), 3.34 (m, 1 H), 3.67 (s,
3 H), 3.76 (s, 3 H), 3.83 (m, 1 H), 6.80 (br, 1 H), 7.10-7.32
(m, 5 H). ¹³C NMR (100 MHz, CDCl3): δ = 18.4,
18.5, 30.5, 37.1, 52.2, 52.6, 60.1, 64.2, 126.8, 127.5, 129.4, 136.3,
168.8, 173.1, 183.4. HRMS: m/z calcd
for C17H24N2O4S: 375.1354 [M + Na];
found: 375.1351 [M + Na].
Compound (11b)
¹H
NMR (300 MHz, CDCl3): δ = 2.05 (br,
1 H), 3.64 (s, 3 H), 3.93 (m, 1 H), 4.18 (m, 1 H), 4.41 (m, 2 H),
4.51 (m, 2 H), 5.06 (m, 3 H), 5.64 (s, 2 H), 5.96 (br, 1 H), 7.14-8.01
(m, 25 H). ¹³C NMR (100 MHz, CDCl3): δ = 53.6,
53.8, 62.7, 68.0, 69.7, 69.9, 71.9, 72.3, 77.8, 83.3, 128.2, 128.8,
128.9, 129.0, 129.2, 129.4, 130.4, 130.5, 131.1, 133.6, 133.9, 134.2,
134.4, 136.1, 157.2, 165.9, 166.5, 168.2, 168.9. 171.2, 183.2. HRMS: m/z calcd for C47H43N3O13S:
912.2414 [M + Na]; found: 912.2409 [M + Na].
Compound (11d)
¹H
NMR (300 MHz, CDCl3): δ = 2.06 (br,
1 H), 3.64 (s, 3 H), 3.87 (m, 1 H), 4.42-4.49 (m, 3 H),
4.62-4.66 (m, 5 H), 4.82 (m, 1 H), 5.00-5.04 (m,
3 H), 5.17 (m, 1 H), 5.41 (m, 3 H), 5.61 (m, 1 H), 5.70 (m, 1 H),
5.93-5.98 (m, 2 H), 7.20-8.08 (m, 40 H). ¹³C
NMR (100 MHz, CDCl3): δ = 50.1, 53.5, 56.1,
63.2, 67.8, 68.5, 69.9, 70.5, 71.5, 71.9, 72.1, 73.0, 73.1, 75.2,
82.6, 102.1, 119.0, 119.1, 119.6, 120.1, 120.4, 120.7, 121.1, 121.4,
127.7, 127.8, 127.9, 128.2, 128.3, 128.4, 128.8, 129.1, 129.5, 130.3,
130.4, 130.5, 131.1, 131.3, 132.0, 132.3, 133.9, 134.4, 136.5, 137.1,
137.2: 157.6, 170.1, 170.2, 170.4, 170.9, 171.0, 171.3, 171.7, 171.9, 183.1.
HRMS: m/z calcd for C74H65N3O21S:
1386.3729 [M + Na]; found: 1386.3719 [M + Na].