Subscribe to RSS
DOI: 10.1055/s-0029-1219539
A Facile H2SO4/4 Å Molecular Sieves Catalyzed Synthesis of 2,3-Unsaturated O-Glycosides via Ferrier-Type Rearrangement
Publication History
Publication Date:
18 February 2010 (online)
Abstract
A novel method for synthesizing 2,3-unsaturated glycosides has been developed using a metal-free catalytic system. This catalyst, sulfuric acid/4 Å molecular sieves can catalyze the reaction of 3,4,6-tri-O-acetyl-d-glucals and a wide range of alcohols at room temperature, affording 2,3-unsaturated glycosides in good α-selectivity (α/β > 6:1) via a Ferrier-type rearrangement.
Key words
Ferrier rearrangement - sulfuric acid - molecular sieves - d-glucal - O-glycosides - glycosylation
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Ferrier RJ.Prasad N. J. Chem. Soc. C. 1969, 570 -
1b
Ferrier RJ. Adv. Carbohydr. Chem. Biochem. 1970, 24: 199 -
1c
Ferrier RJ. Top. Curr. Chem. 2001, 215: 153 -
1d
Ferrier RJ.Zubkov OA. Org. React. 2003, 62: 569 ; and references therein -
2a
Fraser-Reid B. Acc. Chem. Res. 1985, 18: 347 -
2b
Tolstikov AG.Tolstikov GA. Russ. Chem. Rev. 1993, 62: 579 -
2c
Li JJ. Name Reactions 3rd ed.: Springer; Berlin: 2002. p.119 -
2d
Zhang J. Glycoscience 2nd ed.:Fraser-Reid B.Tatsuta K.Thiem J. Springer; Heidelberg: 2008. p.375 -
3a
Schreiber SL. Science 2000, 287: 1964 -
3b
Kubota H.Lim J.Depew KM.Schreiber SL. Chem. Biol. 2002, 9: 265 -
3c
Burke MD.Berger EM.Schreiber SL. Science 2003, 302: 613 -
3d
Hotha S.Tripathi A.
J. Comb. Chem. 2005, 7: 968 -
4a
Schmidt RR.Angerbauer R. Carbohydr. Res. 1979, 72: 272 -
4b
Dorgan BJ.Jackson RFW. Synlett 1996, 859 - 5
Wieczorek E.Thiem J. Polish J. Chem. 1999, 73: 1111 -
6a
Schmidt RR.Angerbauer R. Carbohydr. Res. 1981, 89: 159 -
6b
Angerbauer R.Schmidt RR. Carbohydr. Res. 1981, 89: 193 -
7a
Schmidt RR.Angerbauer R. Angew. Chem., Int. Ed. Engl. 1977, 16: 783 -
7b
Yadav JS.Reddy BVS. Synthesis 2002, 511 - 8
Kartika R.Frein JD.Taylor RE. J. Org. Chem. 2008, 73: 5592 -
9a
Schmidt RR.Angerbauer R. Carbohydr. Res. 1979, 72: 272 -
9b
Bracherro MP.Cabrera EF.Gomez GM.Peredes LMR. Carbohydr. Res. 1998, 308: 181 -
10a
Stevens CL.Filippi JB.Taylor KG. J. Org. Chem. 1966, 31: 1292 -
10b
Isobe M.Ichikawa Y.Funabashi Y.Mio S.Goto T. Tetrahedron 1986, 42: 2863 -
10c
Chapleur Y.Moufid N. J. Chem. Soc., Chem. Commun. 1989, 39 -
10d
Marco-Contelles J. Tetrahedron Lett. 1994, 35: 5059 -
10e
Jiang Y.Ichikawa Y.Isobe M. Synlett 1995, 285 -
10f
Banaag AR.Tius MA. J. Org. Chem. 2008, 73: 8133 -
10g
Fernandes A.DellOlmo M.Tatibouet A.Imberty A.Philouze C.Rollin P. Tetrahedron Lett. 2008, 49: 3484 -
11a
Grynkiewiez G.Priebe W.Zamojski A. Carbohydr. Res. 1979, 68: 33 -
11b
Bhate P.Horton D.Priebe W. Carbohydr. Res. 1985, 144: 331 -
12a
Babu BS.Balasubramanian KK. Tetrahedron Lett. 2000, 41: 1271 -
12b
Nagaraj P.Ramesh NG. Tetrahedron Lett. 2009, 50: 3970 - 13
Yadav JS.Reddy BV.Murthy CV.Kumar GM. Synlett 2000, 1450 - 14
Masson C.Soto J.Bessodes M. Synlett 2000, 1281 - 15
Takhi M.Rahman A.Adel AH.Schmidt RR. Tetrahedron Lett. 2001, 42: 4053 - 16
Babu BS.Balasubramnaian KK. Synth. Commun. 1998, 29: 4299 - 17
Yadav JS.Reddy BV.Reddy JS. J. Chem. Soc., Perkin Trans. 1 2002, 2390 - 18
Swamy NR.Venkateswarlu A. Synthesis 2002, 598 - 19
Bettadaiah BK.Srinivas P. Tetrahedron Lett. 2003, 44: 7257 -
20a
Banik BK.Adler D.Nguyen P.Srivastava N. Heterocycles 2003, 61: 101 -
20b
Naik PU.Nara SJ.Harjani JR.Salunkhe MM. J. Mol. Catal. A: Chem. 2005, 234: 35 - 21
Smitha G.Reddy SC. Synthesis 2004, 834 - 22
Agarwal A.Rani S.Vankar YD. J. Org. Chem. 2004, 69: 6137 - 23
Hotha S.Tripathi A. Tetrahedron Lett. 2005, 46: 4555 - 24
Zhang G.Liu Q.Shi L.Wang J. Tetrahedron 2008, 64: 339 - 25
Gorityala BK.Lorpitthaya R.Bai Y.Liu XW. Tetrahedron Lett. 2009, 65: 5844 -
26a
Kaczmarek J.Preyss M.Liinnberg H.Szafranek J. Carbohydr. Res. 1995, 279: 107 -
26b
Kaczmarek J.Kaczynski Z.Trumpakaj Z.Szafranek J.Bogalecka M.Lonnberg H. Carbohydr. Res. 2000, 325: 16 -
26c
Chao CS.Chen MC.Lin SC.Mong KKT. Carbohydr. Res. 2008, 343: 957 - 27 Oberdorfer and co-workers have demonstrated
similar Ferrier rearrangement using d-galactal
for the construction of the (2R)-2-hydroxy-6,8-dioxabicyclo[3.2.1]oct-3-ene
via an intramolecular pathway in 40% yield:
Oberdorfer F.Haeckel R.Lauer G. Synthesis 1998, 201 - 28
Boga SB.Balasubramanian KK. ARKIVOC 2004, (viii): 87 - 29
Naik PU.Nara SJ.Harjani JR.Salunkhe MM. J. Mol. Catal. A: Chem. 2005, 234: 35 -
30a
Tilve RD.Alexander MV.Khandekar AC.Samant SD.Kanetkar VR. J. Mol. Catal. A: Chem. 2004, 223: 237 -
30b
Roy SC,Lesley SJ,Dilek S, andNino M. inventors; WO 2005070911. - 31
Surya Kiran N.Malla Reddy S.Srinivasulu M.Venkateswarlu Y. Synth. Commun. 2008, 38: 170 - 32
Swami NR.Venkateswarlu A. Synthesis 2002, 598
References and Notes
General Experimental
Procedure
Typically, H2SO4 (0.3
equiv, 16 mL) was added to the mixture of d-glucal
(1 mmol, 272 mg), 4 Å MS (272 mg) and alcohol (1.5 equiv)
in CH2Cl2, and the reaction mixture was stirred
for 5 min at r.t. After the reaction was completed, the reaction
mixture was filtered and washed with CH2Cl2.
The combined organic layer was washed with sat. NaHCO3 solution
(10 mL) and sat. brine (10 mL), and then dried over anhyd Na2SO4.
After evaporation of the solvent under reduced pressure, the crude
products were purified by silica gel column chromatography (PE-EtOAc = 10:1).
Selected Spectral Data
n
-Pentyl 4,6-Di-
O
-acetyl-2,3-dideoxy-a-
d
-
erythro
-hex-2-enopyranoside (5b)
¹H NMR
(500 MHz, CDCl3): d = 0.91 (t, J = 6.7
Hz, 3 H), 1.34-1.37 (m, 4 H), 1.59-1.63 (m, 2
H), 2.07-2.10 (m, 6 H), 3.48-3.53 (m, 1 H), 3.75-3.80
(m, 1 H), 4.09-4.27 (m, 3 H, H-5, H-6a, H-6b), 5.03 (s,
1 H, H-1), 5.30-5.32 (dd, 1 H, J = 9.6
Hz, H-4), 5.83-5.89 (m, 2 H, H-2, H-3) ppm. ¹³C NMR
(125 MHz, CDCl3): d = 13.94, 20.69, 20.88, 22.40, 28.31,
29.32, 62.99, 65.27, 66.81, 68.87, 94.31, 127.92, 128.89, 170.22,
170.71 ppm. ESI-MS: m/z = 323.10 [M + Na+].
n
-Decyl 4,6-Di-
O
-acetyl-2,3-dideoxy-a-
d
-
erythro
-hex-2-enopyranoside (6b)
¹H NMR
(500 MHz, CDCl3): d = 0.86 (t, 3 H), 1.26-1.35
(m, 16 H), 2.07-2.09 (m, J = 9.2
Hz, 6 H), 3.49 (m, 1 H), 4.09-4.26 (m, 3 H, H-5, H-6a,
H-6b), 5.01 (s, 1 H, H-1), 5.29-5.32 (dd, J = 1.3,
9.7 Hz, 1 H, H-4), 5.83-5.88 (m, 2 H, H-2, H-3) ppm. ¹³C
NMR (125 MHz, CDCl3): d = 14.00, 20.69, 20.87,
22.58, 25.67, 26.16, 29.23, 29.36, 29.47, 31.81, 32.70, 62.92, 64.37,
66.80, 68.94, 94.32, 127.90, 128.88, 170.27, 170.76 ppm. ESI-MS: m/z = 393.20 [M + Na+].
2-Ethylhexyl 4,6-Di-
O
-acetyl-2,3-dideoxy-a-
d
-
erythro
-hex-2-enopyranoside (12b)
¹H NMR
(500 MHz, CDCl3): d = 0.86-0.91 (m,
6 H), 1.26-1.33 (m, 8 H), 1.34-1.42 (m, 1 H),
2.09-2.10 (m, J = 5.7
Hz, 6 H), 3.36-3.38 (q, 1 H), 3.54-3.55 (d, 1
H), 3.70-3.71 (t, 1 H), 4.08-4.25 (m, 3 H, H-5,
H-6a, H-6b), 5.00 (s, 1 H, H-1), 5.29-5.31 (dd, J = 9.7 Hz,
1 H, H-4), 5.82-5.94 (m, 2 H, H-2, H-3) ppm. ¹³C
NMR (125 MHz, CDCl3): d = 11.02, 13.99, 20.67,
20.87, 22.94, 23.68, 28.93, 30.49, 39.57, 63.03, 65.28, 66.87, 72.64,
94.45-94.53, 127.95, 128.74, 170.21, 170.71 ppm. ESI-MS: m/z = 365.14 [M + Na+].
2-Cyanoethyl 4,6-Di-
O
-acetyl-2,3-dideoxy-a-
d
-
erythro
-hex-2-enopyranoside (15b)
¹H NMR
(500 MHz, CDCl3): d = 2.08-2.10 (m, J = 10.0 Hz, 6
H), 2.64-2.71 (m, 2 H), 3.76-3.97 (m, 2 H), 4.12-4.22
(m, 3 H, H-5, H-6a, H-6b), 5.07 (s, 1 H, H-1), 5.29-5.31
(dd, 1 H, J = 1.0,
9.5 Hz, H-4), 5.81-5.93 (m, 2 H, H-2, H-3) ppm. ¹³C
NMR (125 MHz, CDCl3): d = 18.96, 20.56, 20.72,
62.69, 63.26, 64.85, 67.14, 94.60, 117.58, 126.70, 129.57, 170.13, 170.59
ppm. ESI-MS: m/z = 306.07 [M + Na+].
Trichloroethyl 4,6-Di-
O
-acetyl-2,3-dideoxy-a-
d
-
erythro
-hex-2-enopyranoside (17b)
¹H NMR
(500 MHz, CDCl3): d = 2.07-2.13 (m, J = 10.8 Hz, 6
H), 4.17-4.18 (d, 2 H), 4.27-4.36 (m, 3 H, H-5,
H-6a, H-6b), 5.31 (s, 1 H, H-1), 5.37-5.38 (dd, J = 9.2 Hz,
1 H, H-4), 5.97-6.00 (m, 2 H, H-2, H-3) ppm. ¹³C
NMR (125 MHz, CDCl3): d = 20.76, 20.87, 62.66,
65.01, 67.49, 76.15, 79.61, 96.37, 126.38, 130.20, 170.39, 170.92
ppm. ESI-MS: m/z = 382.94 [M + Na+].