Subscribe to RSS
DOI: 10.1055/s-0029-1219958
Creation of Quaternary Stereogenic Centers via Copper-Catalyzed Asymmetric Conjugate Addition of Alkenyl Alanes to α,β-Unsaturated Cyclic Ketones
Publication History
Publication Date:
04 June 2010 (online)
Abstract
SimplePhos ligands proved to be very powerful ligands in the generation of quaternary stereogenic centers by Michael addition of alkenyl-aluminum reagents to cyclic enones. Using commercially available and easily accessible alkenylbromides as alane precursors the present procedure offers a facile access to β-alkenyl-substituted cyclohexanones with high enantioselectivities up to 96%.
Key words
aluminum - alkenes - copper - Michael addition - asymmetric catalysis
- 1
Sakai M.Hayashi H.Miyaura N. J. Organomet. Chem. 1997, 16: 4229 - 2
Hayashi T.Yamasaki K. Chem. Rev. 2003, 103: 2829 - 3
Takaya Y.Ogasawara M.Hayashi T. J. Am. Chem. Soc. 1998, 120: 5579 -
4a
Ahn KH.Klassen RB.Lippard SJ. Organometallics 1990, 9: 3178 -
4b
Alexakis A.Albrow V.Biswas K.d’Augustin M.Prietob O.Woodward S. Chem. Commun. 2005, 2843 -
4c
Vuagnoux-d’Augustin M.Alexakis A. Chem. Eur. J. 2007, 13: 9647 -
4d
Hawner C.Li K.Cirriez V.Alexakis A. Angew. Chem. Int. Ed. 2008, 47: 8211 -
4e
Lee K.Hoveyda AH. J. Org. Chem. 2009, 74: 4455 -
4f
Palais L.Alexakis A. Chem. Eur. J. 2009, 15: 10473 -
4g
Robert T.Velder J.Schmalz H.-G. Angew. Chem. Int. Ed. 2008, 47: 7718 -
5a
d’Augustin M.Palais L.Alexakis A. Angew Chem. Int. Ed. 2005, 44: 1376 -
5b
Vuagnoux-d’Augustin M.Kehrli S.Alexakis A. Synlett 2007, 2057 - 6 Creation of quaternary stereogenic
centers to a highly activated substrate via Rh-catalyzed ACA with alkenylboronic
acids:
Mauleón P.Carretero JC. Chem. Commun. 2005, 4961 - 7
May LT.Brown MK.Hoveyda AH. Angew. Chem. Int. Ed. 2008, 47: 7358 - For some examples for the synthesis of various bromoolefins, see:
-
8a
Al Dulayymi JR.Baird MS.Simpson MJ.Nyman S. Tetrahedron 1996, 52: 12509 -
8b
Abbas S.Hayes CJ.Worden S. Tetrahedron Lett. 2000, 41: 3215 -
8c
Wolfe JP.Yang Q.Hay MB.Ney JE. Adv. Synth. Catal. 2005, 347: 1614 -
9a
Seebach D.Neumann H. Chem. Ber. 1974, 107: 847 -
9b
Seebach D.Neumann H. Tetrahedron Lett. 1976, 52: 4839 -
10a
Zezschwitz P. Synthesis 2008, 1809 -
10b
Wipf P.Smitrovich JH.Moon C. J. Org. Chem. 1992, 57: 3178 -
10c
Zweifel G.Miller JA. Org. React. (N.Y.) 1984, 32: 375 - 11
Palais L.Mikhel IS.Bournaud C.Micouin L.Falciola CA.Vuagnoux-d’Augustin M.Rosset S.Bernardinelli G.Alexakis A. Angew. Chem. Int. Ed. 2007, 46: 7462 - 12
Biradar D.Zhou S.Gau H. Org. Lett. 2009, 11: 3386 - 13 The same observation was made previously
for the addition of trimethylsilylacetylene to 2-cyclohexen-1-one:
Corey EJ.Kwak Y. Org. Lett. 2004, 6: 3385 - 14 The same observation has been reported
previously:
Otomaru Y.Hayashi T. Tetrahedron: Asymmetry 2004, 15: 2647 - 17
Xiong H.Rieke DR. J. Org. Chem. 1991, 56: 3109
References and Notes
General Procedure
for the Cu-Catalyzed ACA Employing Alkenylalanes Exemplified for
Product 5
To a solution of 2-propenylbromide (480 µL,
653 mg, 5.4 mmol, 1.0 equiv) in MTBE (6.0 mL) was added under inert atmosphere
a fresh solution of t-BuLi (6.75 mL,
10.8 mmol, 1.6 M in pentane, 2.0 equiv) at -78 ˚C.
The reaction was stirred for 30 min at this temperature. Then a
fresh solution of Me2AlCl (6.0 mL, 5.4 mmol, 0.9 M in
heptane, 1.0 equiv) was added, and the reaction mixture was stirred
for another 2 h maintaining the temperature at -78 ˚C.
Now the cooling bath was removed, and the reaction vessel was immediately submerged
in a water bath. The alane was stirred over night at r.t., and 1
h before use of the solution for catalysis stirring was stopped
to ensure precipitation of the salts. Then, 10.5 mL corresponding
to 2.0 equiv of the supernatant solution of alane was taken out
with a syringe and slowly added to the metal complex. In a separate
flask, CuTc (28.5 mg, 0.15 mmol, 10 mol%), ligand L11 (93.5 mg, 0.17 mmol, 11 mol%),
and Et2O (5.0 mL) were thoroughly stirred at r.t.
for
1 h. Then the flask was cooled to -30 ˚C,
and the corresponding alane (10.5 mL, 3.0 mmol, 2.0 equiv) was added.
After 15 min of stirring 3-methyl-2-cyclohexenone
4 (170 µL,
165 mg, 1.50 mmol, 1 equiv) was added, and the reaction mixture
was stirred for 18 h at this temperature. Then the reaction mixture
was quenched at -30 ˚C with MeOH (1.0
mL) and let warm to r.t. An aqueous solution of HCl (10%,
15 mL) was added, followed by Et2O (50 mL). Extraction
of the aqueous phase with Et2O (2 × 50 mL) and addition
of NaOCl solution (10%, 4 mL) to the combined organic solvents
afforded a pale yellow suspension which after extensive shaking
turned into a blue suspension.¹6 After removal
of the aqueous phase the organic phase was dried over Na2SO4,
and the solvent was removed in vacuo. The remaining crude oil was
purified by flash chromatography (SiO2; pentane-Et2O = 7:1),
and the pure compound 5 was afforded as
a colorless oil with a pleasant eucalyptus like fragrance (194 mg,
1.27 mmol, 85%, R
f
= 0.23
in pentane-Et2O = 9:1).
The analytical data were in accord with the ones reported in the
literature.¹7 Chiral separation: Chirasil
DEX-CB,
60-0-1-115-0-20-170, 50 cm/s, t
R1 = 44.80
min, t
R2 = 47.35
min.
NaOCl solution was added to oxidize remaining SimplePhos ligand L11 and thus facilitate the purification.