Synlett 2010(16): 2468-2470  
DOI: 10.1055/s-0030-1258031
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

β-Nitroacrylates as Precursors of Tetrasubstituted Furans in a One-Pot Process and under Acidic Solvent-Free Conditions

Roberto Ballini, Serena Gabrielli, Alessandro Palmieri*
Green Chemistry Group, School of Science and Technology, Chemistry Division, Via S. Agostino 1, 62032 Camerino, Italy
Fax: +39(0737)402297; e-Mail: alessandro.palmieri@unicam.it;
Weitere Informationen

Publikationsverlauf

Received 2 July 2010
Publikationsdatum:
12. August 2010 (online)

Abstract

The reaction of α-functionalized carbonyl derivatives with β-nitroacrylates, catalyzed by acidic alumina and in the absence of solvent, allows the one-pot synthesis of tetrasubstituted furan derivatives, in which at least two powerful functionalities are present in the 3- and 4-positions.

    References and Notes

  • 1a Hou XL. Cheung HY. Hon TY. Kwan PL. Lo TH. Tong SYT. Wong HNC. Tetrahedron  1998,  54:  1955 
  • 1b Keay BA. Chem. Soc. Rev.  1999,  28:  209 
  • 1c Hou XL. Yang Z. Wong HNC. In Progress in Heterocyclic Chemistry   Vol. 14:  Grimble GW. Gilchrist TL. Pergamon; Oxford: 2002.  p.139 
  • 2a Sundberg RJ. In Comprehensive Heterocyclic Chemistry   Vol. 5:  Katrizky AR. Rees CW. Pergamon; New York: 1984.  p.313 
  • 2b Heaney H. In Natural Products Chemistry   Nakanishi K. Kodansha; Tokyo: 1974.  p.297 
  • 2c Lipshutz BH. Chem. Rev.  1986,  86:  795 
  • 2d Shipman M. Contemporary Org. Synth.  1995,  2:  1 
  • 3a Brown RCD. Angew. Chem. Int. Ed.  2005,  44:  850 
  • 3b Cacchi S. J. Organomet. Chem.  1999,  576:  42 
  • 3c Keay BA. Chem. Soc. Rev.  1999,  28:  209 
  • 4 Minetto G. Raveglia LF. Sega A. Taddei M. Eur. J. Org. Chem.  2005,  5277 
  • 5a Calter MA. Zhu C. Lachicotte RJ. Org. Lett.  2002,  4:  209 
  • 5b Holtz E. Langer P. Synlett  2004,  1805 
  • 6 Yanami T. Ballatore A. Miyashita M. Kato M. Yoshikoshi A. J. Chem. Soc., Perkin Trans. 1  1978,  1144 
  • 7 Ishikawa T. Miyahara T. Asakura M. Higuchi S. Org. Lett.  2005,  7:  1211 
  • 8 Song L. Li X. Xing C. Li D. Zhu S. Deng H. Shao M. Synlett  2010,  830 
  • 9 Ballini R. Maggi R. Palmieri A. Sartori G. Synthesis  2007,  3017 
  • See, for example:
  • 10a Ballini R. Gabrielli S. Palmieri A. Synlett  2009,  965 
  • 10b Ballini R. Bosica G. Palmieri A. Bakhtiari K. Synlett  2009,  268 
  • 10c Ballini R. Bosica G. Gabrielli S. Palmieri A. Tetrahedron  2009,  65:  2916 
  • 11a Ballini R. Fiorini D. Palmieri A. Tetrahedron Lett.  2004,  45:  7027 
  • 11b Ballini R. Fiorini D. Palmieri A. Tetrahedron Lett.  2005,  46:  1245 
  • 12 Palmieri A. Ley SV. Polyzos A. Ladlow M. Baxendale IR. Beilstein J. Org. Chem.  2009,  5:  23 
13

Typical Procedure for the Synthesis of Compounds 3
To a stirred mixture of the active methylene derivative 1 (1 mmol) and β-nitroacrylate 2 (1 mmol), acidic alumina (1.2 g) was added. The resulting heterogeneous mixture was initially stirred at r.t., then heated at 60 ˚C, and stirred for the appropriate time (see Table  [²] ; reaction progress was monitored by TLC). After completion of the reaction the cooled heterogeneous system was directly charged onto a silica gel column (eluting with hexanes-EtOAc) to give the pure product 3.
Spectroscopic Data for Representative Compounds.
Compound 3aa: clear oil. IR (neat): ν = 1050, 1189, 1301, 1577, 1684, 1716 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.21 (t, 3 H, J = 7.7 Hz), 1.32 (t, 3 H, J = 7.3 Hz), 2.35 (s, 3 H), 2.40 (s, 3 H), 2.86 (q, 2 H, J = 7.7 Hz), 4.29 (q, 2 H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 12.6, 13.2, 14.4, 21.2, 31.2, 60.9, 112.1, 123.0, 153.7, 161.8, 163.8, 197.3. MS (EI, 70 eV): m/z = 224 [M+], 181, 178 (100), 163, 135, 122, 108, 57, 43, 29. Anal. Calcd for C12H16O4 (224.25): C, 64.27; H, 7.19. Found: C, 64.34; H, 7.23.
Compound 3ba: clear oil. IR (neat): ν = 1097, 1210, 1589, 1719 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.21 (t, 3 H, J = 7.7 Hz), 1.31 (t, 6 H, J = 7.3 Hz), 2.43 (s, 3 H), 2.80 (q, 2 H, J = 7.7 Hz), 4.27 (q, 4 H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 12.6, 13.3, 14.3, 14.4, 20.8, 60.7, 60.8, 113.1, 113.8, 155.7, 160.2, 163.9. MS (EI, 70eV): m/z = 254 [M+], 208 (100), 180, 152, 108, 43. Anal. Calcd for C13H18O4 (254.28): C, 61.40; H, 7.14. Found: C, 61.51; H, 7.19.
Compound 3de: clear oil. IR (neat): ν = 1046, 1190, 1582, 1687, 1735 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.36 (t, 3 H, J = 7.3 Hz), 2.08-2.17 (m, 2 H), 2.46-2.51 (m, 2 H), 2.48 (s, 3 H), 2.82 (t, 2 H, J = 6.4 Hz), 4.32 (q, 2 H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 13.5, 14.4, 22.4, 23.6, 38.8, 60.9, 111.9, 119.6, 158.5, 163.6, 165.8, 192.2. MS (EI, 70 eV): m/z = 222 [M+], 194, 176 (100), 166, 138, 78, 43. Anal. Calcd for C12H14O4 (222.24): C, 64.85; H, 6.35. Found: C, 64.94; H, 6.41.
Compound 3gh: clear oil. IR (neat): ν = 1223, 1583, 1689, 1736 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.11 (s, 6 H), 1.35 (t, 3 H, J = 7.3 Hz), 1.60-1.74 (m, 4 H), 2.32 (t, 2 H, J = 6.8 Hz), 2.38 (s, 2 H), 2.69 (s, 2 H), 2.89 (t, 2 H, J = 6.8 Hz), 3.64 (s, 3 H), 4.31 (q, 2 H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 14.3, 24.5, 27.1, 27.6, 28.6, 33.8, 35.1, 37.5, 53.3, 61.0, 111.7, 118.4, 162.1, 163.5, 165.0, 174.0, 191.9. MS (EI, 70eV): m/z = 350 [M+], 319, 304, 272, 244, 231, 217 (100), 55, 29. Anal. Calcd for C19H26O6 (350.41): C, 65.13; H, 7.48. Found: C, 65.22; H, 7.56.
Compound 3hc: clear oil. IR (neat): ν = 691, 1112, 1492, 1586, 1603, 1721, 2232, 3062 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.90 (t, 3 H, J = 6.8 Hz), 1.31-1.39 (m, 4 H), 1.41 (t, 3 H, J = 7.3 Hz), 1.68-1.79 (m, 2 H), 3.05 (t, 2 H, J = 7.7 Hz), 4.38 (q, 2 H, J = 7.3 Hz), 7.40-7.50 (m, 3 H), 7.98 (d, 2 H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl3): δ = 14.1, 14.2, 22.4, 27.6, 27.7, 31.4, 61.3, 92.1, 114.2, 114.5, 125.7, 127.7, 129.2, 130.5, 158.7, 161.8, 163.3. MS (EI, 70eV): m/z = 311 [M+], 282, 254, 226 (100), 105, 77, 29. Anal. Calcd for C19H21NO3 (311.37): C, 73.29; H, 6.80; N, 4.50. Found: C, 73.33; H, 6.85; N, 4.46.