Subscribe to RSS
DOI: 10.1055/s-0030-1258031
β-Nitroacrylates as Precursors of Tetrasubstituted Furans in a One-Pot Process and under Acidic Solvent-Free Conditions
Publication History
Publication Date:
12 August 2010 (online)
Abstract
The reaction of α-functionalized carbonyl derivatives with β-nitroacrylates, catalyzed by acidic alumina and in the absence of solvent, allows the one-pot synthesis of tetrasubstituted furan derivatives, in which at least two powerful functionalities are present in the 3- and 4-positions.
Key words
heterocycles - heterogeneous catalysis - furans - β-nitro-acrylates - domino reaction
-
1a
Hou XL.Cheung HY.Hon TY.Kwan PL.Lo TH.Tong SYT.Wong HNC. Tetrahedron 1998, 54: 1955 -
1b
Keay BA. Chem. Soc. Rev. 1999, 28: 209 -
1c
Hou XL.Yang Z.Wong HNC. In Progress in Heterocyclic Chemistry Vol. 14:Grimble GW.Gilchrist TL. Pergamon; Oxford: 2002. p.139 -
2a
Sundberg RJ. In Comprehensive Heterocyclic Chemistry Vol. 5:Katrizky AR.Rees CW. Pergamon; New York: 1984. p.313 -
2b
Heaney H. In Natural Products ChemistryNakanishi K. Kodansha; Tokyo: 1974. p.297 -
2c
Lipshutz BH. Chem. Rev. 1986, 86: 795 -
2d
Shipman M. Contemporary Org. Synth. 1995, 2: 1 -
3a
Brown RCD. Angew. Chem. Int. Ed. 2005, 44: 850 -
3b
Cacchi S. J. Organomet. Chem. 1999, 576: 42 -
3c
Keay BA. Chem. Soc. Rev. 1999, 28: 209 - 4
Minetto G.Raveglia LF.Sega A.Taddei M. Eur. J. Org. Chem. 2005, 5277 -
5a
Calter MA.Zhu C.Lachicotte RJ. Org. Lett. 2002, 4: 209 -
5b
Holtz E.Langer P. Synlett 2004, 1805 - 6
Yanami T.Ballatore A.Miyashita M.Kato M.Yoshikoshi A. J. Chem. Soc., Perkin Trans. 1 1978, 1144 - 7
Ishikawa T.Miyahara T.Asakura M.Higuchi S. Org. Lett. 2005, 7: 1211 - 8
Song L.Li X.Xing C.Li D.Zhu S.Deng H.Shao M. Synlett 2010, 830 - 9
Ballini R.Maggi R.Palmieri A.Sartori G. Synthesis 2007, 3017 - See, for example:
-
10a
Ballini R.Gabrielli S.Palmieri A. Synlett 2009, 965 -
10b
Ballini R.Bosica G.Palmieri A.Bakhtiari K. Synlett 2009, 268 -
10c
Ballini R.Bosica G.Gabrielli S.Palmieri A. Tetrahedron 2009, 65: 2916 -
11a
Ballini R.Fiorini D.Palmieri A. Tetrahedron Lett. 2004, 45: 7027 -
11b
Ballini R.Fiorini D.Palmieri A. Tetrahedron Lett. 2005, 46: 1245 - 12
Palmieri A.Ley SV.Polyzos A.Ladlow M.Baxendale IR. Beilstein J. Org. Chem. 2009, 5: 23
References and Notes
Typical Procedure
for the Synthesis of Compounds 3
To a stirred mixture
of the active methylene derivative 1 (1 mmol)
and β-nitroacrylate 2 (1 mmol),
acidic alumina (1.2 g) was added. The resulting heterogeneous mixture
was initially stirred at r.t., then heated at 60 ˚C,
and stirred for the appropriate time (see Table
[²]
; reaction progress was monitored
by TLC). After completion of the reaction the cooled heterogeneous
system was directly charged onto a silica gel column (eluting with
hexanes-EtOAc) to give the pure product 3.
Spectroscopic Data for Representative Compounds.
Compound 3aa: clear oil. IR (neat): ν = 1050,
1189, 1301, 1577, 1684, 1716 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.21
(t, 3 H, J = 7.7
Hz), 1.32 (t, 3 H, J = 7.3
Hz), 2.35 (s, 3 H), 2.40 (s, 3 H), 2.86 (q, 2 H, J = 7.7
Hz), 4.29 (q, 2 H, J = 7.3
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 12.6,
13.2, 14.4, 21.2, 31.2, 60.9, 112.1, 123.0, 153.7, 161.8, 163.8, 197.3.
MS (EI, 70 eV): m/z = 224 [M+],
181, 178 (100), 163, 135, 122, 108, 57, 43, 29. Anal. Calcd for
C12H16O4 (224.25): C, 64.27; H,
7.19. Found: C, 64.34; H, 7.23.
Compound 3ba:
clear oil. IR (neat): ν = 1097,
1210, 1589, 1719 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.21
(t, 3 H, J = 7.7
Hz), 1.31 (t, 6 H, J = 7.3
Hz), 2.43 (s, 3 H), 2.80 (q, 2 H, J = 7.7
Hz), 4.27 (q, 4 H, J = 7.3
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 12.6,
13.3, 14.3, 14.4, 20.8, 60.7, 60.8, 113.1, 113.8, 155.7, 160.2,
163.9. MS (EI, 70eV): m/z = 254 [M+],
208 (100), 180, 152, 108, 43. Anal. Calcd for C13H18O4 (254.28):
C, 61.40; H, 7.14. Found: C, 61.51; H, 7.19.
Compound 3de: clear oil. IR (neat): ν = 1046,
1190, 1582, 1687, 1735 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.36
(t, 3 H, J = 7.3
Hz), 2.08-2.17 (m, 2 H), 2.46-2.51 (m, 2 H), 2.48 (s,
3 H), 2.82 (t, 2 H, J = 6.4
Hz), 4.32 (q, 2 H, J = 7.3
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 13.5,
14.4, 22.4, 23.6, 38.8, 60.9, 111.9, 119.6, 158.5, 163.6, 165.8,
192.2. MS (EI, 70 eV): m/z = 222 [M+],
194, 176 (100), 166, 138, 78, 43. Anal. Calcd for C12H14O4 (222.24):
C, 64.85; H, 6.35. Found: C, 64.94; H, 6.41.
Compound 3gh: clear oil. IR (neat): ν = 1223,
1583, 1689, 1736 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.11
(s, 6 H), 1.35 (t, 3 H, J = 7.3
Hz), 1.60-1.74 (m, 4 H), 2.32 (t, 2 H, J = 6.8
Hz), 2.38 (s, 2 H), 2.69 (s, 2 H), 2.89 (t, 2 H, J = 6.8 Hz),
3.64 (s, 3 H), 4.31 (q, 2 H, J = 7.3
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 14.3,
24.5, 27.1, 27.6, 28.6, 33.8, 35.1, 37.5, 53.3, 61.0, 111.7, 118.4,
162.1, 163.5, 165.0, 174.0, 191.9. MS (EI, 70eV): m/z = 350 [M+],
319, 304, 272, 244, 231, 217 (100), 55, 29. Anal. Calcd for C19H26O6 (350.41): C,
65.13; H, 7.48. Found: C, 65.22; H, 7.56.
Compound 3hc: clear oil. IR (neat): ν = 691,
1112, 1492, 1586, 1603, 1721, 2232, 3062 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 0.90
(t, 3 H, J = 6.8
Hz), 1.31-1.39 (m, 4 H), 1.41 (t, 3 H, J = 7.3
Hz), 1.68-1.79 (m, 2 H), 3.05 (t, 2 H, J = 7.7
Hz), 4.38 (q, 2 H, J = 7.3
Hz), 7.40-7.50 (m, 3 H), 7.98 (d, 2 H, J = 7.3
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 14.1,
14.2, 22.4, 27.6, 27.7, 31.4, 61.3, 92.1, 114.2, 114.5, 125.7, 127.7,
129.2, 130.5, 158.7, 161.8, 163.3. MS (EI, 70eV): m/z = 311 [M+],
282, 254, 226 (100), 105, 77, 29. Anal. Calcd for C19H21NO3 (311.37):
C, 73.29; H, 6.80; N, 4.50. Found: C, 73.33; H, 6.85; N, 4.46.