Subscribe to RSS
DOI: 10.1055/s-0030-1258042
New Synthesis of (Z)- and (E)-3-Styryl-4-quinolones
Publication History
Publication Date:
12 August 2010 (online)
Abstract
A novel and efficient route for the synthesis of (Z)- and (E)-3-styryl-4-quinolones is described. Wittig reaction of 4-(chloroquinoline- and quinolone)-3-carbaldehydes with benzylic ylides is the key transformation for this synthetic route. The (Z)-1-methyl-3-styryl-4-quinolone is obtained with high diastereoselectivity from the reaction of 1-methyl-4-quinolone-3-carbaldehyde; while (E)-3-styryl-4-quinolone is prepared through the Wittig reaction of 4-chloroquinoline-3-carbaldehyde followed by acid hydrolysis. Both synthetic routes are efficient regardless of the substituents on the benzylic ylides.
Key words
4-chloroquinoline-3-carbaldehyde - 4-quinolone-3-carbaldehyde - 3-styryl-4-quinolone - 4-chloro-3-styrylquinoline - Wittig reaction
-
1a
Michael JP. Nat. Prod. Rep. 1997, 14: 605 -
1b
Michael JP. Nat. Prod. Rep. 2004, 21: 650 -
1c
Koyama J.Toyokuni I.Tagahara K. Chem. Pharm. Bull. 1999, 47: 1038 -
1d
Funayama S.Tanaka R.Kumekawa Y.Noshita T.Mori T.Kashiwagura T.Murata K. Biol. Pharm. Bull. 2001, 24: 100 -
1e
Coppola GM. J. Heterocycl. Chem. 1982, 19: 727 -
1f
Sondheimer F.Meisels A. J. Org. Chem. 1958, 23: 762 -
1g
Goodwin S.Smith AF.Velasquez AA.Horning EC. J. Am. Chem. Soc. 1959, 81: 6209 -
2a
Oliphant CM.Green GM. Am. Fam. Physician 2002, 65: 455 -
2b
Alós J.-I. Enferm. Infecc. Microbiol. Clin. 2003, 21: 261 -
2c
Van Bambeke F.Michot J.-M.Van Eldere J.Tulkens PM. Clin. Microb. Infect. 2005, 11: 256 -
2d
Mitscher LA. Chem. Rev. 2005, 105: 559 -
3a
Tsukamura M. Am. Rev. Resp. Dis. 1985, 131: 348 -
3b
O’Brien RJ. Am. J. Respir. Crit. Care Med. 2003, 168: 1266 -
3c
Janin YL. Bioorg. Med. Chem. 2007, 15: 2479 -
4a
Nakamura S.Kozuka M.Bastow KF.Tokuda H.Nishino H.Suzuki M.Tatsuzaki J.Natschke SLM.Kuo S.-C.Lee K.-H. Bioorg. Med. Chem. 2005, 13: 4396 -
4b
Xia Y.Yang Z.-Y.Xia P.Bastow KF.Nakanishi Y.Nampoothiri P.Hamel E.Brossi A.Lee K.-H. Bioorg. Med. Chem. Lett. 2003, 13: 2891 -
4c
Hsu S.-C.Yang J.-S.Kuo C.-L.Lo C.Lin J.-P.Hsia T.-C.Lin J.-J.Lai K.-C.Kuo H.-M.Huang L.-J.Kuo S.-C.Wood WG.Chung J.-G. J. Orthop. Res. 2009, 27: 1637 -
4d
Wang S.-W.Pan S.-L.Huang Y.-C.Guh J.-H.Chiang P.-C.Huang D.-Y.Kuo S.-C.Lee K.-H.Teng C.-M. Mol. Cancer Ther. 2008, 7: 350 -
4e
Li L.Wang H.-K.Kuo S.-C.Wu T.-S.Mauger A.Lin CM.Hamel E.Lee K.-H. J. Med. Chem. 1994, 37: 3400 -
4f
Lai Y.-Y.Huang L.-J.Lee K.-H.Xiao Z.Bastow KF.Yamori T.Kuo S.-C. Bioorg. Med. Chem. 2005, 13: 265 -
4g
Sui Z.Nguyen VN.Altom J.Fernandez J.Hilliard JJ.Bernstein JI.Barret JF.Ohemeng KA. Eur. J. Med. Chem. 1999, 34: 381 -
5a
Lucero BA.Gomes CRB.Frugulhetti ICPP.Faro LV.Alvarenga L.Souza MCBV.Souza TML.Ferreira VF. Bioorg. Med. Chem. Lett. 2006, 16: 1010 -
5b
Hartline CB.Harden EA.Williams-Aziz SL.Kushner NL.Brideau RJ.Kern ER. Antiviral Res. 2005, 65: 97 -
5c
Massari S.Daelemans D.Manfroni G.Sabatini S.Tabarrini O.Pannecouque C.Cecchetti V. Bioorg. Med. Chem. 2009, 17: 667 -
5d
Sato M.Kawakami H.Motomura T.Aramaki H.Matsuda T.Yamashita M.Ito Y.Matsuzaki Y.Yamataka K.Ikeda S.Shinkai H. J. Med. Chem. 2009, 52: 4869 -
5e
Sato M.Motomura T.Aramaki H.Matsuda T.Yamashita M.Ito Y.Kawakami H.Matsuzaki Y.Watanabe W.Yamataka K.Ikeda S.Kodama E.Matsuoka M.Shinkai H. J. Med. Chem. 2006, 49: 1506 -
6a
Manera C.Benetti V.Castelli MP.Cavallini T.Lazzarotti S.Pibiri F.Saccomanni G.Tuccinardi T.Vannacci A.Martinelli A.Ferrarini PL. J. Med. Chem. 2006, 49: 5947 -
6b
Pasquini S.Botta L.Semeraro T.Mugnaini C.Ligresti A.Palazzo E.Maione S.Di Marzo V.Corelli F. J. Med. Chem. 2008, 51: 5075 -
6c
Stern E.Muccioli GG.Bosier B.Hamtiaux L.Millet R.Poupaert JH.Hénichart J.-P.Depreux P.Goossens J.-F.Lambert DM. J. Med. Chem. 2007, 50: 5471 - 7
Huang L.-J.Hsieh M.-C.Teng C.-M.Lee K.-H.Kuo S.-C. Bioorg. Med. Chem. 1998, 6: 1657 - 8
Hadjeri M.Barbier M.Ronot X.Mariotte A.-M.Boumendjel A.Boutonnat J. J. Med. Chem. 2003, 46: 2125 - 9
Traxler P.Green J.Mett H.Séquin U.Furet P. J. Med. Chem. 1999, 42: 1018 - 10
Xiao Z.-P.Li H.-Q.Shi L.Lv P.-C.Song Z.-C.Zhu H.-L. ChemMedChem 2008, 3: 1077 - 11
Sonawane SA.Chavan VP.Shingare MS.Karale BK. Indian J. Heterocycl. Chem. 2002, 12: 65 - 12
Almeida AIS.Silva AMS.Cavaleiro JAS. Synlett 2010, 462 - 13
Coelho A.El-Maatougui A.Ravina E.Cavaleiro JAS.Silva AMS. Synlett 2006, 3324 - 14
Seixas RSGR.Silva AMS.Pinto DCGA.Cavaleiro JAS. Synlett 2008, 3193 -
15a
Kolodiazhnyi OI. Phosphorous Ylides - Chemistry and Application in Organic Synthesis Wiley-VCH; Weinheim: 1999. p.359-538 -
15b
Maryanoff BE.Reitz AB.Mutter MS.Inners RR.Almond HR.Whittle RR.Olofson RA. J. Am. Chem. Soc. 1986, 108: 7664 -
15c
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 -
15d
Sandulache A.Silva AMS.Pinto DCGA.Almeida LMPM.Cavaleiro JAS. New J. Chem. 2003, 27: 1592
References and Notes
Optimized Experimental
Procedure
To a suspension of 4-quinolone-3-carbaldehyde
(1, 1.16 mmol, 200.9 mg) in acetone (20
mL), anhyd K2CO3 (2.32 mmol, 320.6 mg) was
added, and the mixture was stirred at r.t. for 30 min. p-Toluenesulfonyl chloride (1.74 mmol, 331.7
mg) was then added, and the mixture was stirred at r.t. for 3 h.
After that time, the K2CO3 was filtered off,
washed with acetone (2 × 20 mL), and
the filtrate was concentrated. The residue was purified by silica
gel column chromatography, first using CH2Cl2 as
eluent (to remove the excess of p-toluenesulfonyl
chloride) and then a mixture of CH2Cl2-acetone
(5:1). The solvent was evaporated to dryness and the solid recrystallized
from a mixture of CH2Cl2-light PE
to give 1-tosyl-4-quinolone-3-carbaldehyde (2b)
as a white solid (1.15 mmol, 376.4 mg, 99%).
Analytical Data for ( Z ) - 4′-nitro-3-styryl-1-tosyl-4-quinolone (5f) Mp 144-146 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 2.42 (s, 3 H, 4′′-CH3), 6.86 (AB, 1 H, J = 12.3 Hz, H-β), 6.89 (AB, 1 H, J = 12.3 Hz, H-α), 7.29 (d, 2 H, J = 8.3 Hz, H-3′′,5′′), 7.43 (ddd, 1 H, J = 0.9, 7.2, 8.0 Hz, H-6), 7.48 (d, 2 H, J = 8.6 Hz, H-2′,6′), 7.48 (d, 2 H, J = 8.3 Hz, H-2′′,6′′), 7.61 (ddd, 1 H, J = 1.7, 7.2, 8.8 Hz, H-7), 8.14 (d, 1 H, J = 8.8 Hz, H-8), 8.17 (d, 2 H, J = 8.6 Hz, H-3′,5′), 8.35 (d, 1 H, J = 0.6 Hz, H-2), 8.40 (dd, 1 H, J = 1.7, 8.0 Hz, H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 21.7 (4′′-CH3), 118.1 (C-8), 119.4 (C-3), 124.0 (C-3′,5′), 125.83 (C-10), 125.85 (C-6), 126.7 (C-α), 127.5 (C-5 and C-2′′,6′′), 129.7 (C-2′,6′), 130.1 (C-β), 130.4 (C-3′′,5′′), 132.8 (C-7), 133.4 (C-1′′), 136.3 (C-9), 136.9 (C-2), 144.1 (C-1′), 146.5 (C-4′), 146.8 (C-4′′), 177.4 (C-4) ppm. ESI+-MS: m/z (%) = 447.1 (100) [M + H]+, 469.1 (9) [M + Na]+. ESI+-HRMS: m/z calcd for [C24H18N2O5S + H]+: 447.10092; found: 447.10011.
18Analytical Data for ( E ) - 4′-Nitro-3-styryl-1-tosyl-4-quinolone (6f) Mp 219-220 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 2.41 (s, 3 H, 4′′-CH3), 7.29 (d, 1 H, J = 16.6 Hz, H-α), 7.34 (d, 2 H, J = 8.8 Hz, H-3′′,5′′), 7.44 (ddd, 1 H, J = 0.8, 7.2, 8.0 Hz, H-6), 7.61 (ddd, 1 H, J = 1.7, 7.2, 8.7 Hz, H-7), 7.69 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.79 (d, 2 H, J = 8.8 Hz, H-2′′,6′′), 7.89 (d, 1 H, J = 16.6 Hz, H-β), 8.21 (d, 1 H, J = 8.7 Hz, H-8), 8.24 (d, 2 H, J = 8.8 Hz, H-3′,5′), 8.43 (dd, 1 H, J = 1.7, 8.0 Hz, H-5), 8.84 (s, 1 H, H-2) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 21.8 (4′′-CH3), 118.1 (C-8), 119.6 (C-3), 124.1 (C-3′,5′), 126.0 (C-6), 126.2 (C-α), 126.3 (C-10), 126.9 (C-2′,6′), 127.6 (C-2′′,6′′), 127.7 (C-5), 129.0 (C-β), 130.5 (C-3′′,5′′), 132.8 (C-7), 133.5 (C-1′′), 135.8 (C-9), 136.7 (C-2), 144.2 (C-1′), 146.8 (C-4′ and C-4′′), 177.0 (C-4) ppm. ESI+-MS: m/z (%) = 447.1 (100) [M + H]+. ESI+-HRMS: m/z calcd for [C24H18N2O5S + H]+: 447.10092; found: 447.10023.
19Analytical Data for ( E ) - 1-Methyl-4′-nitro-3-styryl-4-quinolone (6d) Mp >300 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 3.92 (s, 3 H, N-CH3), 7.24 (d, 1 H, J = 16.1 Hz, H-α), 7.45 (d, 1 H, J = 8.5 Hz, H-8), 7.47 (ddd, 1 H, J = 1.2, 7.4, 7.8, H-6), 7.62 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.72 (ddd, 1 H, J = 1.5, 7.4, 8.5 Hz, H-7), 7.81 (s, 1 H, H-2), 7.92 (d, 1 H, J = 16.1 Hz, H-β), 8.19 (d, 2 H, J = 8.8 Hz, H-3′,5′), 8.57 (dd, 1 H, J = 1.5, 7.8 Hz, H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 41.1 (N-CH3), 115.4 (C-8), 117.4 (C-3), 124.1 (C-3′,5′), 124.5 (C-6), 126.3 (C-β), 126.5 (C-2′,6′), 127.0 (C-10), 127.5 (C-5), 127.6 (C-α), 132.3 (C-7), 139.3 (C-9), 143.7 (C-2), 145.2 (C-1′), 146.3 (C-4′), 176.3 (C-4) ppm. ESI+-MS: m/z (%) = 307.1 (100) [M + H]+, 329.1 (5) [M + Na]+. ESI+-HRMS: m/z calcd for [C18H14N2O3 + H]+: 307.10772; found: 307.10785.
20
Optimized Experimental
Procedure
A mixture of NaH (37 mg, 1.56 mmol for reaction
with 3a-c and
19 mg, 0.78 mmol for reaction with 3d)
and the appropriate phosphonium halide 3a-d (1.56 mmol for 3a-c and 0.78 mmol for 3d)
in refluxing dry THF (20 mL) was stirred for the requisite time
(Tables
[¹]
and
[²]
). The appear-ance of an
orange colour and the disappearance of the suspension of phosphonium
salt indicated the ylide formation. Subsequently, the appropriate
3-carbaldehyde 2a,b and 7 (0.52 mmol) was added, and reflux was
continued for the time noted in Tables
[¹]
and
[²]
. After cooling to r.t.,
the reaction mixture was poured onto ice (20 g) and H2O
(20 mL), and the pH value was adjusted to 5 with dilute HCl. In the
case of precipitation, the solid was filtered off, washed with H2O
(3 × 50 mL), dissolved in CHCl3 (50
mL), washed with H2O (2 × 50
mL), and the organic solvent evaporated to dryness. If no solid
precipitated, the organic layer was extracted with CHCl3 (3 × 50
mL), and the solvent was evaporated to dryness. In all the cases,
the residues were dissolved in CH2Cl2.
For
the reaction of 1-methyl-4-quinolone-3-carbaldehyde (2a)
the residue was purified by silica gel column chromatography with
a mixture of CH2Cl2-EtOAc (4:1), leading to
the isolation of two products, in each case. The components with
the higher R
f
value
were identified as (E)-1-methyl-3-styryl-4-quinolones 6a-d with
the slower eluting components being (Z)-1-methyl-3-styryl-4-quinolones 5a-d.
These compounds were recrystallized from a mixture of CH2Cl2-light
PE. For the reaction of 1-tosyl-4-quinolone-3-carbaldehyde (2b) the residue was purified by preparative
TLC with a mixture of light PE-EtOAc (4:1), in the case
of 5e and 6e,
and with a mixture of light PE-EtOAc (2:1), in the case
of 5f and 6f.
In both cases, the component of higher R
f
value was identified as (E)-3-styryl-1-tosyl-4-quinolones 6e,f with the
second being the (Z)-3-styryl-1-tosyl-4-quinolones 5e,f. For the
reaction of 4-chloroquinoline-3-carbaldehyde (7),
the residue was purified by silica gel column chromatography, eluting
with a mixture of light PE-EtOAc (7:1 to 4:1), leading
to the isolation of two products, in each case. In this case, the component
of higher R
f
value
was identified as (Z)-4-chloro-3-styrylquinolines 8a-d and
the second as (E)-4-chloro-3-styrylquinolines 9a-d.
These compounds were recrystallized from a mixture of CH2Cl2-light
PE.
Analytical Data for ( Z ) - 4-Chloro-4′-ethoxy-3-styryl-quinoline (8c) Mp 89-91 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 1.38 (t, 3 H, J = 7.0 Hz, 4′-OCH2CH 3), 3.97 (q, 2 H, J = 7.0 Hz, 4′-OCH 2CH3), 6.67 (d, 1 H, J = 12.0 Hz, H-α), 6.72 (d, 2 H, J = 8.7 Hz, H-3′,5′), 6.88 (d, 1 H, J = 12.0 Hz, H-β), 7.09 (d, 2 H, J = 8.7 Hz, H-2′,6′), 7.64 (ddd, 1 H, J = 1.3, 6.9, 8.3 Hz, H-6), 7.73 (ddd, 1 H, J = 1.4, 6.9, 8.3 Hz, H-7), 8.04 (d, 1 H, J = 8.3 Hz, H-8), 8.28 (dd, 1 H, J = 1.4, 8.3 Hz, H-5), 8.63 (s, 1 H, H-2) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 14.8 (4′-OCH2 CH3), 63.4 (4′-OCH2CH3), 114.5 (C-3′,5′), 122.2 (C-α), 124.0 (C-5), 126.5 (C-10), 127.6 (C-6), 128.2 (C-1′), 129.5 (C-8), 129.8 (C-7), 129.9 (C-3), 130.3 (C-2′,6′), 133.6 (C-β), 140.5 (C-4), 147.2 (C-9), 151.3 (C-2), 158.8 (C-4′) ppm. ESI+-MS: m/z (%) = 310.1 (100) [M + H]+. Anal. Calcd (%) for C19H16ClNO (309.8): C, 73.66; H, 5.21; N, 4.52. Found: C, 73.55; H, 5.23; N, 4.55.
22
Analytical Data
for (
E
)
-
4-Chloro-4′-ethoxy-3-styryl-quinoline
(9c)
Mp 154-155 ˚C. ¹H
NMR (300.13 MHz, CDCl3): δ = 1.45 (t,
3 H, J = 7.0
Hz, 4′-OCH2CH
3),
4.08 (q, 2 H, J = 7.0
Hz, 4′-OCH
2CH3),
6.94 (d, 2 H, J = 8.8
Hz, H-3′,5′), 7.29 (d, 1 H, J = 16.5
Hz, H-β), 7.49 (d, 1 H, J = 16.5
Hz, H-α), 7.56 (d, 2 H, J = 8.8
Hz, H-2′,6′), 7.64 (ddd, 1 H, J = 1.1,
7.0, 8.3 Hz, H-6), 7.71 (ddd, 1 H, J = 1.4,
7.0, 8.3 Hz, H-7), 8.09 (dd, 1 H, J = 1.1,
8.3 Hz, H-8), 8.26 (dd, 1 H, J = 1.4,
8.3 Hz, H-5), 9.18 (s, 1 H, H-2) ppm. ¹³C
NMR (75.47 MHz, CDCl3): δ = 14.8
(4′-OCH2
CH3),
63.6 (4′-OCH2CH3),
114.8 (C-3′,5′), 120.0 (C-α), 124.4 (C-5),
126.4 (C-10), 127.9 (C-6), 128.37 (C-2′,6′), 128.40
(C-3), 129.2 (C-1′), 129.5 and 129.6 (C-7 and C-8), 132.7
(C-β), 138.9 (C-4), 147.4 (C-9), 148.1 (C-2), 159.5 (C-4′)
ppm. ESI+-MS: m/z (%) = 310.1
(100) [M + H]+. Anal
Calcd for C19H16ClNO (309.8): C, 73.66; H, 5.21;
N, 4.52. Found: C, 73.82; H, 5.22; N, 4.50.
Analytical Data for ( E )-4′-Chloro-3-styryl-4 -quinolone (11b) Mp >300 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.23 (d, 1 H, J = 16.3 Hz, H-α), 7.37 (dd, 1 H, J = 7.5, 7.8 Hz, H-6), 7.41 (d, 2 H, J = 8.4 Hz, H-3′,5′), 7.53 (d, 2 H, J = 8.4 Hz, H-2′,6′), 7.58 (d, 1 H, J = 7.9 Hz, H-8), 7.67 (dd, 1 H, J = 7.5, 7.9 Hz, H-7), 7.82 (d, 1 H, J = 16.3 Hz, H-β), 8.21 (d, 1 H, J = 7.8 Hz, H-5), 8.29 (s, 1 H, H-2), 12.19 (br s, 1 H, NH) ppm. ¹³C NMR (75.47 MHz, DMSO-d 6): δ = 116.5 (C-3), 118.4 (C-8), 123.6 (C-6), 125.1 (C-α), 125.2 (C-β), 125.4 (C-5 and C-10), 127.4 (C-2′,6′), 128.6 (C-3′,5′), 130.9 (C-4′), 131.5 (C-7), 137.5 (C-1′), 138.6 (C-9), 139.2 (C-2), 175.2 (C-4) ppm. ESI+-MS: m/z (%) = 282.0(100) [M + H]+. ESI+-HRMS: m/z calcd for [C17H12ClNO + H]+: 282.06802; found 282.06801.
24Optimized Experimental Procedure A suspension of a mixture of (Z)- and (E)-4-chloro-3-styrylquinoline 8a-d and 9a-d (0.19 mmol) in 40% aq formic acid (6 mL) was refluxed for the appropriate time (Table [4] ). The resulting suspension was cooled in ice for 30 min, the pH value adjusted to 5 with Na2CO3, and the precipitate formed was filtered off and washed with H2O. The pure (E)-3-styryl-4-quinolone derivatives 11a-d were collected as a white solids (11a-c) or an orange solid (11d) without the need for further purification.