Synlett 2010(15): 2257-2262  
DOI: 10.1055/s-0030-1258042
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

New Synthesis of (Z)- and (E)-3-Styryl-4-quinolones

Raquel S. G. R. Seixas, Artur M. S. Silva*, José A. S. Cavaleiro
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: artur.silva@ua.pt;
Further Information

Publication History

Received 11 June 2010
Publication Date:
12 August 2010 (online)

Abstract

A novel and efficient route for the synthesis of (Z)- and (E)-3-styryl-4-quinolones is described. Wittig reaction of 4-(chloroquinoline- and quinolone)-3-carbaldehydes with benzylic ylides is the key transformation for this synthetic route. The (Z)-1-methyl-3-styryl-4-quinolone is obtained with high diastereoselectivity from the reaction of 1-methyl-4-quinolone-3-carbaldehyde; while (E)-3-styryl-4-quinolone is prepared through the Wittig reaction of 4-chloroquinoline-3-carbaldehyde followed by acid hydrolysis. Both synthetic routes are efficient regardless of the substituents on the benzylic ylides.

    References and Notes

  • 1a Michael JP. Nat. Prod. Rep.  1997,  14:  605 
  • 1b Michael JP. Nat. Prod. Rep.  2004,  21:  650 
  • 1c Koyama J. Toyokuni I. Tagahara K. Chem. Pharm. Bull.  1999,  47:  1038 
  • 1d Funayama S. Tanaka R. Kumekawa Y. Noshita T. Mori T. Kashiwagura T. Murata K. Biol. Pharm. Bull.  2001,  24:  100 
  • 1e Coppola GM. J. Heterocycl. Chem.  1982,  19:  727 
  • 1f Sondheimer F. Meisels A. J. Org. Chem.  1958,  23:  762 
  • 1g Goodwin S. Smith AF. Velasquez AA. Horning EC. J. Am. Chem. Soc.  1959,  81:  6209 
  • 2a Oliphant CM. Green GM. Am. Fam. Physician  2002,  65:  455 
  • 2b Alós J.-I. Enferm. Infecc. Microbiol. Clin.  2003,  21:  261 
  • 2c Van Bambeke F. Michot J.-M. Van Eldere J. Tulkens PM. Clin. Microb. Infect.  2005,  11:  256 
  • 2d Mitscher LA. Chem. Rev.  2005,  105:  559 
  • 3a Tsukamura M. Am. Rev. Resp. Dis.  1985,  131:  348 
  • 3b O’Brien RJ. Am. J. Respir. Crit. Care Med.  2003,  168:  1266 
  • 3c Janin YL. Bioorg. Med. Chem.  2007,  15:  2479 
  • 4a Nakamura S. Kozuka M. Bastow KF. Tokuda H. Nishino H. Suzuki M. Tatsuzaki J. Natschke SLM. Kuo S.-C. Lee K.-H. Bioorg. Med. Chem.  2005,  13:  4396 
  • 4b Xia Y. Yang Z.-Y. Xia P. Bastow KF. Nakanishi Y. Nampoothiri P. Hamel E. Brossi A. Lee K.-H. Bioorg. Med. Chem. Lett.  2003,  13:  2891 
  • 4c Hsu S.-C. Yang J.-S. Kuo C.-L. Lo C. Lin J.-P. Hsia T.-C. Lin J.-J. Lai K.-C. Kuo H.-M. Huang L.-J. Kuo S.-C. Wood WG. Chung J.-G. J. Orthop. Res.  2009,  27:  1637 
  • 4d Wang S.-W. Pan S.-L. Huang Y.-C. Guh J.-H. Chiang P.-C. Huang D.-Y. Kuo S.-C. Lee K.-H. Teng C.-M. Mol. Cancer Ther.  2008,  7:  350 
  • 4e Li L. Wang H.-K. Kuo S.-C. Wu T.-S. Mauger A. Lin CM. Hamel E. Lee K.-H. J. Med. Chem.  1994,  37:  3400 
  • 4f Lai Y.-Y. Huang L.-J. Lee K.-H. Xiao Z. Bastow KF. Yamori T. Kuo S.-C. Bioorg. Med. Chem.  2005,  13:  265 
  • 4g Sui Z. Nguyen VN. Altom J. Fernandez J. Hilliard JJ. Bernstein JI. Barret JF. Ohemeng KA. Eur. J. Med. Chem.  1999,  34:  381 
  • 5a Lucero BA. Gomes CRB. Frugulhetti ICPP. Faro LV. Alvarenga L. Souza MCBV. Souza TML. Ferreira VF. Bioorg. Med. Chem. Lett.  2006,  16:  1010 
  • 5b Hartline CB. Harden EA. Williams-Aziz SL. Kushner NL. Brideau RJ. Kern ER. Antiviral Res.  2005,  65:  97 
  • 5c Massari S. Daelemans D. Manfroni G. Sabatini S. Tabarrini O. Pannecouque C. Cecchetti V. Bioorg. Med. Chem.  2009,  17:  667 
  • 5d Sato M. Kawakami H. Motomura T. Aramaki H. Matsuda T. Yamashita M. Ito Y. Matsuzaki Y. Yamataka K. Ikeda S. Shinkai H. J. Med. Chem.  2009,  52:  4869 
  • 5e Sato M. Motomura T. Aramaki H. Matsuda T. Yamashita M. Ito Y. Kawakami H. Matsuzaki Y. Watanabe W. Yamataka K. Ikeda S. Kodama E. Matsuoka M. Shinkai H. J. Med. Chem.  2006,  49:  1506 
  • 6a Manera C. Benetti V. Castelli MP. Cavallini T. Lazzarotti S. Pibiri F. Saccomanni G. Tuccinardi T. Vannacci A. Martinelli A. Ferrarini PL. J. Med. Chem.  2006,  49:  5947 
  • 6b Pasquini S. Botta L. Semeraro T. Mugnaini C. Ligresti A. Palazzo E. Maione S. Di Marzo V. Corelli F. J. Med. Chem.  2008,  51:  5075 
  • 6c Stern E. Muccioli GG. Bosier B. Hamtiaux L. Millet R. Poupaert JH. Hénichart J.-P. Depreux P. Goossens J.-F. Lambert DM. J. Med. Chem.  2007,  50:  5471 
  • 7 Huang L.-J. Hsieh M.-C. Teng C.-M. Lee K.-H. Kuo S.-C. Bioorg. Med. Chem.  1998,  6:  1657 
  • 8 Hadjeri M. Barbier M. Ronot X. Mariotte A.-M. Boumendjel A. Boutonnat J. J. Med. Chem.  2003,  46:  2125 
  • 9 Traxler P. Green J. Mett H. Séquin U. Furet P. J. Med. Chem.  1999,  42:  1018 
  • 10 Xiao Z.-P. Li H.-Q. Shi L. Lv P.-C. Song Z.-C. Zhu H.-L. ChemMedChem  2008,  3:  1077 
  • 11 Sonawane SA. Chavan VP. Shingare MS. Karale BK. Indian J. Heterocycl. Chem.  2002,  12:  65 
  • 12 Almeida AIS. Silva AMS. Cavaleiro JAS. Synlett  2010,  462 
  • 13 Coelho A. El-Maatougui A. Ravina E. Cavaleiro JAS. Silva AMS. Synlett  2006,  3324 
  • 14 Seixas RSGR. Silva AMS. Pinto DCGA. Cavaleiro JAS. Synlett  2008,  3193 
  • 15a Kolodiazhnyi OI. Phosphorous Ylides - Chemistry and Application in Organic Synthesis   Wiley-VCH; Weinheim: 1999.  p.359-538  
  • 15b Maryanoff BE. Reitz AB. Mutter MS. Inners RR. Almond HR. Whittle RR. Olofson RA. J. Am. Chem. Soc.  1986,  108:  7664 
  • 15c Maryanoff BE. Reitz AB. Chem. Rev.  1989,  89:  863 
  • 15d Sandulache A. Silva AMS. Pinto DCGA. Almeida LMPM. Cavaleiro JAS. New J. Chem.  2003,  27:  1592 
16

Optimized Experimental Procedure
To a suspension of 4-quinolone-3-carbaldehyde (1, 1.16 mmol, 200.9 mg) in acetone (20 mL), anhyd K2CO3 (2.32 mmol, 320.6 mg) was added, and the mixture was stirred at r.t. for 30 min. p-Toluenesulfonyl chloride (1.74 mmol, 331.7 mg) was then added, and the mixture was stirred at r.t. for 3 h. After that time, the K2CO3 was filtered off, washed with acetone (2 × 20 mL), and the filtrate was concentrated. The residue was purified by silica gel column chromatography, first using CH2Cl2 as eluent (to remove the excess of p-toluenesulfonyl chloride) and then a mixture of CH2Cl2-acetone (5:1). The solvent was evaporated to dryness and the solid recrystallized from a mixture of CH2Cl2-light PE to give 1-tosyl-4-quinolone-3-carbaldehyde (2b) as a white solid (1.15 mmol, 376.4 mg, 99%).

17

Analytical Data for ( Z ) - 4′-nitro-3-styryl-1-tosyl-4-quinolone (5f) Mp 144-146 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 2.42 (s, 3 H, 4′′-CH3), 6.86 (AB, 1 H, J = 12.3 Hz, H-β), 6.89 (AB, 1 H, J = 12.3 Hz, H-α), 7.29 (d, 2 H, J = 8.3 Hz, H-3′′,5′′), 7.43 (ddd, 1 H, J = 0.9, 7.2, 8.0 Hz, H-6), 7.48 (d, 2 H, J = 8.6 Hz, H-2′,6′), 7.48 (d, 2 H, J = 8.3 Hz, H-2′′,6′′), 7.61 (ddd, 1 H, J = 1.7, 7.2, 8.8 Hz, H-7), 8.14 (d, 1 H, J = 8.8 Hz, H-8), 8.17 (d, 2 H, J = 8.6 Hz, H-3′,5′), 8.35 (d, 1 H, J = 0.6 Hz, H-2), 8.40 (dd, 1 H, J = 1.7, 8.0 Hz, H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 21.7 (4′′-CH3), 118.1 (C-8), 119.4 (C-3), 124.0 (C-3′,5′), 125.83 (C-10), 125.85 (C-6), 126.7 (C-α), 127.5 (C-5 and C-2′′,6′′), 129.7 (C-2′,6′), 130.1 (C-β), 130.4 (C-3′′,5′′), 132.8 (C-7), 133.4 (C-1′′), 136.3 (C-9), 136.9 (C-2), 144.1 (C-1′), 146.5 (C-4′), 146.8 (C-4′′), 177.4 (C-4) ppm. ESI+-MS: m/z (%) = 447.1 (100) [M + H]+, 469.1 (9) [M + Na]+. ESI+-HRMS: m/z calcd for [C24H18N2O5S + H]+: 447.10092; found: 447.10011.

18

Analytical Data for ( E ) - 4′-Nitro-3-styryl-1-tosyl-4-quinolone (6f) Mp 219-220 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 2.41 (s, 3 H, 4′′-CH3), 7.29 (d, 1 H, J = 16.6 Hz, H-α), 7.34 (d, 2 H, J = 8.8 Hz, H-3′′,5′′), 7.44 (ddd, 1 H, J = 0.8, 7.2, 8.0 Hz, H-6), 7.61 (ddd, 1 H, J = 1.7, 7.2, 8.7 Hz, H-7), 7.69 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.79 (d, 2 H, J = 8.8 Hz, H-2′′,6′′), 7.89 (d, 1 H, J = 16.6 Hz, H-β), 8.21 (d, 1 H, J = 8.7 Hz, H-8), 8.24 (d, 2 H, J = 8.8 Hz, H-3′,5′), 8.43 (dd, 1 H, J = 1.7, 8.0 Hz, H-5), 8.84 (s, 1 H, H-2) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 21.8 (4′′-CH3), 118.1 (C-8), 119.6 (C-3), 124.1 (C-3′,5′), 126.0 (C-6), 126.2 (C-α), 126.3 (C-10), 126.9 (C-2′,6′), 127.6 (C-2′′,6′′), 127.7 (C-5), 129.0 (C-β), 130.5 (C-3′′,5′′), 132.8 (C-7), 133.5 (C-1′′), 135.8 (C-9), 136.7 (C-2), 144.2 (C-1′), 146.8 (C-4′ and C-4′′), 177.0 (C-4) ppm. ESI+-MS: m/z (%) = 447.1 (100) [M + H]+. ESI+-HRMS: m/z calcd for [C24H18N2O5S + H]+: 447.10092; found: 447.10023.

19

Analytical Data for ( E ) - 1-Methyl-4′-nitro-3-styryl-4-quinolone (6d) Mp >300 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 3.92 (s, 3 H, N-CH3), 7.24 (d, 1 H, J = 16.1 Hz, H-α), 7.45 (d, 1 H, J = 8.5 Hz, H-8), 7.47 (ddd, 1 H, J = 1.2, 7.4, 7.8, H-6), 7.62 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.72 (ddd, 1 H, J = 1.5, 7.4, 8.5 Hz, H-7), 7.81 (s, 1 H, H-2), 7.92 (d, 1 H, J = 16.1 Hz, H-β), 8.19 (d, 2 H, J = 8.8 Hz, H-3′,5′), 8.57 (dd, 1 H, J = 1.5, 7.8 Hz, H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 41.1 (N-CH3), 115.4 (C-8), 117.4 (C-3), 124.1 (C-3′,5′), 124.5 (C-6), 126.3 (C-β), 126.5 (C-2′,6′), 127.0 (C-10), 127.5 (C-5), 127.6 (C-α), 132.3 (C-7), 139.3 (C-9), 143.7 (C-2), 145.2 (C-1′), 146.3 (C-4′), 176.3 (C-4) ppm. ESI+-MS: m/z (%) = 307.1 (100) [M + H]+, 329.1 (5) [M + Na]+. ESI+-HRMS: m/z calcd for [C18H14N2O3 + H]+: 307.10772; found: 307.10785.

20

Optimized Experimental Procedure
A mixture of NaH (37 mg, 1.56 mmol for reaction with 3a-c and 19 mg, 0.78 mmol for reaction with 3d) and the appropriate phosphonium halide 3a-d (1.56 mmol for 3a-c and 0.78 mmol for 3d) in refluxing dry THF (20 mL) was stirred for the requisite time (Tables  [¹] and  [²] ). The appear-ance of an orange colour and the disappearance of the suspension of phosphonium salt indicated the ylide formation. Subsequently, the appropriate 3-carbaldehyde 2a,b and 7 (0.52 mmol) was added, and reflux was continued for the time noted in Tables  [¹] and  [²] . After cooling to r.t., the reaction mixture was poured onto ice (20 g) and H2O (20 mL), and the pH value was adjusted to 5 with dilute HCl. In the case of precipitation, the solid was filtered off, washed with H2O (3 × 50 mL), dissolved in CHCl3 (50 mL), washed with H2O (2 × 50 mL), and the organic solvent evaporated to dryness. If no solid precipitated, the organic layer was extracted with CHCl3 (3 × 50 mL), and the solvent was evaporated to dryness. In all the cases, the residues were dissolved in CH2Cl2.
For the reaction of 1-methyl-4-quinolone-3-carbaldehyde (2a) the residue was purified by silica gel column chromatography with a mixture of CH2Cl2-EtOAc (4:1), leading to the isolation of two products, in each case. The components with the higher R f value were identified as (E)-1-methyl-3-styryl-4-quinolones 6a-d with the slower eluting components being (Z)-1-methyl-3-styryl-4-quinolones 5a-d. These compounds were recrystallized from a mixture of CH2Cl2-light PE. For the reaction of 1-tosyl-4-quinolone-3-carbaldehyde (2b) the residue was purified by preparative TLC with a mixture of light PE-EtOAc (4:1), in the case of 5e and 6e, and with a mixture of light PE-EtOAc (2:1), in the case of 5f and 6f. In both cases, the component of higher R f value was identified as (E)-3-styryl-1-tosyl-4-quinolones 6e,f with the second being the (Z)-3-styryl-1-tosyl-4-quinolones 5e,f. For the reaction of 4-chloroquinoline-3-carbaldehyde (7), the residue was purified by silica gel column chromatography, eluting with a mixture of light PE-EtOAc (7:1 to 4:1), leading to the isolation of two products, in each case. In this case, the component of higher R f value was identified as (Z)-4-chloro-3-styrylquinolines 8a-d and the second as (E)-4-chloro-3-styrylquinolines 9a-d. These compounds were recrystallized from a mixture of CH2Cl2-light PE.

21

Analytical Data for ( Z ) - 4-Chloro-4′-ethoxy-3-styryl-quinoline (8c) Mp 89-91 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 1.38 (t, 3 H, J = 7.0 Hz, 4′-OCH2CH 3), 3.97 (q, 2 H, J = 7.0 Hz, 4′-OCH 2CH3), 6.67 (d, 1 H, J = 12.0 Hz, H-α), 6.72 (d, 2 H, J = 8.7 Hz, H-3′,5′), 6.88 (d, 1 H, J = 12.0 Hz, H-β), 7.09 (d, 2 H, J = 8.7 Hz, H-2′,6′), 7.64 (ddd, 1 H, J = 1.3, 6.9, 8.3 Hz, H-6), 7.73 (ddd, 1 H, J = 1.4, 6.9, 8.3 Hz, H-7), 8.04 (d, 1 H, J = 8.3 Hz, H-8), 8.28 (dd, 1 H, J = 1.4, 8.3 Hz, H-5), 8.63 (s, 1 H, H-2) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 14.8 (4′-OCH2 CH3), 63.4 (4′-OCH2CH3), 114.5 (C-3′,5′), 122.2 (C-α), 124.0 (C-5), 126.5 (C-10), 127.6 (C-6), 128.2 (C-1′), 129.5 (C-8), 129.8 (C-7), 129.9 (C-3), 130.3 (C-2′,6′), 133.6 (C-β), 140.5 (C-4), 147.2 (C-9), 151.3 (C-2), 158.8 (C-4′) ppm. ESI+-MS: m/z (%) = 310.1 (100) [M + H]+. Anal. Calcd (%) for C19H16ClNO (309.8): C, 73.66; H, 5.21; N, 4.52. Found: C, 73.55; H, 5.23; N, 4.55.

22

Analytical Data for ( E ) - 4-Chloro-4′-ethoxy-3-styryl-quinoline (9c)
Mp 154-155 ˚C. ¹H NMR (300.13 MHz, CDCl3): δ = 1.45 (t, 3 H, J = 7.0 Hz, 4′-OCH2CH 3), 4.08 (q, 2 H, J = 7.0 Hz, 4′-OCH 2CH3), 6.94 (d, 2 H, J = 8.8 Hz, H-3′,5′), 7.29 (d, 1 H, J = 16.5 Hz, H-β), 7.49 (d, 1 H, J = 16.5 Hz, H-α), 7.56 (d, 2 H, J = 8.8 Hz, H-2′,6′), 7.64 (ddd, 1 H, J = 1.1, 7.0, 8.3 Hz, H-6), 7.71 (ddd, 1 H, J = 1.4, 7.0, 8.3 Hz, H-7), 8.09 (dd, 1 H, J = 1.1, 8.3 Hz, H-8), 8.26 (dd, 1 H, J = 1.4, 8.3 Hz, H-5), 9.18 (s, 1 H, H-2) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 14.8 (4′-OCH2 CH3), 63.6 (4′-OCH2CH3), 114.8 (C-3′,5′), 120.0 (C-α), 124.4 (C-5), 126.4 (C-10), 127.9 (C-6), 128.37 (C-2′,6′), 128.40 (C-3), 129.2 (C-1′), 129.5 and 129.6 (C-7 and C-8), 132.7 (C-β), 138.9 (C-4), 147.4 (C-9), 148.1 (C-2), 159.5 (C-4′) ppm. ESI+-MS: m/z (%) = 310.1 (100) [M + H]+. Anal Calcd for C19H16ClNO (309.8): C, 73.66; H, 5.21; N, 4.52. Found: C, 73.82; H, 5.22; N, 4.50.

23

Analytical Data for ( E )-4′-Chloro-3-styryl-4 -quinolone (11b) Mp >300 ˚C. ¹H NMR (300.13 MHz, DMSO-d 6): δ = 7.23 (d, 1 H, J = 16.3 Hz, H-α), 7.37 (dd, 1 H, J = 7.5, 7.8 Hz, H-6), 7.41 (d, 2 H, J = 8.4 Hz, H-3′,5′), 7.53 (d, 2 H, J = 8.4 Hz, H-2′,6′), 7.58 (d, 1 H, J = 7.9 Hz, H-8), 7.67 (dd, 1 H, J = 7.5, 7.9 Hz, H-7), 7.82 (d, 1 H, J = 16.3 Hz, H-β), 8.21 (d, 1 H, J = 7.8 Hz, H-5), 8.29 (s, 1 H, H-2), 12.19 (br s, 1 H, NH) ppm. ¹³C NMR (75.47 MHz, DMSO-d 6): δ = 116.5 (C-3), 118.4 (C-8), 123.6 (C-6), 125.1 (C-α), 125.2 (C-β), 125.4 (C-5 and C-10), 127.4 (C-2′,6′), 128.6 (C-3′,5′), 130.9 (C-4′), 131.5 (C-7), 137.5 (C-1′), 138.6 (C-9), 139.2 (C-2), 175.2 (C-4) ppm. ESI+-MS: m/z (%) = 282.0(100) [M + H]+. ESI+-HRMS: m/z calcd for [C17H12ClNO + H]+: 282.06802; found 282.06801.

24

Optimized Experimental Procedure A suspension of a mixture of (Z)- and (E)-4-chloro-3-styrylquinoline 8a-d and 9a-d (0.19 mmol) in 40% aq formic acid (6 mL) was refluxed for the appropriate time (Table  [4] ). The resulting suspension was cooled in ice for 30 min, the pH value adjusted to 5 with Na2CO3, and the precipitate formed was filtered off and washed with H2O. The pure (E)-3-styryl-4-quinolone derivatives 11a-d were collected as a white solids (11a-c) or an orange solid (11d) without the need for further purification.