RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258128
Magnetically Recoverable Iron Nanoparticle Catalyzed Cross-Dehydrogenative Coupling (CDC) between Two Csp³-H Bonds Using Molecular Oxygen
Publikationsverlauf
Publikationsdatum:
09. Juli 2010 (online)
Abstract
The oxidative C-C bond formations between Csp³-H bond adjacent to nitrogen and Csp³-H bond of nitroalkanes are catalyzed efficiently by magnetically recoverable iron nanoparticles using oxygen. The catalyst can be magnetically removed and recycled easily for nine times without decreasing activity.
Key words
iron nanoparticles - oxygen - cross-coupling - C-C bond formation
-
1a
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
1b
Li C.-J.Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008, 105: 13197 -
1c
Anastas PT.Kirchhoff MM. Acc. Chem. Res. 2002, 35: 686 -
2a
Trost BM. Science 1991, 254: 1471 -
2b
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998. -
2c
Jenck JF.Agterberg F.Droescher MJ. Green Chem. 2004, 6: 544 - 3
Corey EJ.Cheng XM. The Logic of Chemical Synthesis John Wiley and Sons; New York: 1989. -
4a
Godula K.Sames D. Science 2006, 312: 67 -
4b
Bergman RG. Nature (London) 2007, 446: 391 -
4c
Jia C.Kitamura T.Fujiwara Y. Acc. Chem. Res. 2001, 34: 633 -
4d
Ritleng V.Sirlin C.Pfeffer M. Chem. Rev. 2002, 102: 1731 -
4e
Yu J.-Q.Giri R.Chen X. Org. Biomol. Chem. 2006, 4: 4041 -
4f
Alberico D.Scott ME.Lautens M. Chem. Rev. 2007, 107: 174 -
4g
Herrerias CI.Yao X.Li Z.Li C.-J. Chem. Rev. 2007, 107: 2546 -
4h
Seregin IV.Gevorgyan V. Chem. Soc. Rev. 2007, 36: 1173 -
4i
Giri R.Shi B.-F.Engle KM.Maugel N.Yu J.-Q. Chem. Soc. Rev. 2009, 38: 3242 -
4j
Ackermann L. Pure. Appl. Chem. 2010, 82: 1403 - Selected examples of CDC reaction, see:
-
5a
Li C.-J. Acc. Chem. Res. 2009, 42: 335 -
5b
Zhao L.Baslé O.Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106: 4106 -
5c
Deng G.Li C.-J. Org. Lett. 2009, 11: 1171 -
5d
Zhao L.Li C.-J. Angew. Chem. Int. Ed. 2008, 47: 7075 -
5e
Deng G.Zhao L.Li C.-J. Angew. Chem. Int. Ed. 2008, 47: 6278 -
5f
Li Z.Cao L.Li C.-J. Angew. Chem. Int. Ed. 2007, 46: 6505 -
5g
Zhang Y.Li C.-J. Eur. J. Org. Chem. 2007, 4654 -
5h
Li Z.Bohle DS.Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 8928 -
5i
Li Z.Li C.-J. J. Am. Chem. Soc. 2006, 128: 56 -
5j
Li Z.Li C.-J. Eur. J. Org. Chem. 2005, 3173 -
5k
Li Z.Li C.-J. J. Am. Chem. Soc. 2005, 127: 6968 -
5l
Li Z.Li C.-J. J. Am. Chem. Soc. 2005, 127: 3672 -
5m
Li Z.Li C.-J. Org. Lett. 2004, 6: 4997 -
5n
Li Z.Li C.-J. J. Am. Chem. Soc. 2004, 126: 11810 -
5o
Baslé O.Li C.-J. Green Chem. 2007, 9: 1047 -
5p
Baslé O.Li C.-J. Chem. Commun. 2009, 4124 - For examples, see:
-
6a
Sud A.Sureshkumar D.Klussmann M. Chem. Commun. 2009, 3169 -
6b
Shen Y.Li M.Wang S.Zhan T.Tan Z.Guo C.-C. Chem. Commun. 2009, 953 -
6c
Jin J.Li Y.Wang Z.-J.Qian W.-X.Bao W.-L. Eur. J. Org. Chem. 2010, 1235 -
6d
Maheswari CU.Kumar GS.Venkateshwar M.Kumar RA.Kantam ML.Reddy KR. Adv. Synth. Catal. 2010, 352: 341 -
6e
Cai G.Fu Y.Li Y.Wan X.Shi Z. J. Am. Chem. Soc. 2007, 129: 7666 -
6f
Stuart DR.Fagnou K. Science 2007, 316: 1172 -
6g
Dwight TA.Rue NR.Charyk D.Josselyn R.DeBoef B. Org. Lett. 2007, 9: 3137 -
6h
Hull KL.Sanford MS. J. Am. Chem. Soc. 2007, 129: 11904 -
6i
Xia J.-B.You S.-L. Organometallics 2007, 26: 4869 -
6j
Yu A.Gu Z.Chen D.He W.Tan P.Xiang J. Catal. Commun. 2009, 11: 162 -
6k
Li Y.-Z.Li B.-J.Lu X.-Y.Lin S.Shi Z.-J. Angew. Chem. Int. Ed. 2009, 48: 3817 -
6l
Anaya de Parrodi C.Walsh PJ. Angew. Chem. Int. Ed. 2009, 48: 4679 -
6m
Li B.-J.Tian S.-L.Fang Z.Shi Z.-J. Angew. Chem. Int. Ed. 2008, 47: 1115 -
6n
Catino AJ.Nichols JM.Nettles BJ.Doyle MP. J. Am. Chem. Soc. 2006, 128: 5648 -
6o
Murahashi S.-I.Nakae T.Terai H.Komiya N. J. Am. Chem. Soc. 2008, 130: 11005 -
6p
Tsang AS.-K.Todd MH. Tetrahedron Lett. 2009, 50: 1199 -
6q
Condie AG.González-Gómez JC.Stephenson CRJ. J. Am. Chem. Soc. 2010, 132: 1464 - For examples, see:
-
7a
Latham AH.Williams ME. Acc. Chem. Res. 2008, 41: 411 -
7b
Laurent S.Forge D.Port M.Roch A.Robic C.Vander Elst L.Muller RN. Chem. Rev. 2008, 108: 2064 -
7c
Sun S.Zeng H. J. Am. Chem. Soc. 2002, 124: 8204 - For selected reviews on Fe catalysis, see:
-
7d
Bolm C.Legros J.Le Paih J.Zani L. Chem. Rev. 2004, 104: 6217 -
7e
Sarhan AAO.Bolm C. Chem. Soc. Rev. 2009, 38: 2730 -
7f
Morris RH. Chem. Soc. Rev. 2009, 38: 2282 -
7g
Cheng ZY.Li YZ. Chem. Rev. 2007, 107: 748 -
7h
Sherry BD.Fürstner A. Acc. Chem. Res. 2008, 41: 1500 - 8
Guin D.Baruwati B.Manorama SV. Org. Lett. 2007, 9: 1419 - For examples, see:
-
9a
Polshettiwar V.Baruwati B.Varma RS. Chem. Commun. 2009, 1837 -
9b
Luo S.Zheng X.Xu H.Mi X.Zhang L.Cheng J.-P. Adv. Synth. Catal. 2007, 349: 2431 -
9c
Polshettiwar V.Baruwati B.Varma RS. Green Chem. 2009, 11: 127 -
9d
Kotani M.Koike T.Yamaguchi K.Mizuno N. Green Chem. 2006, 8: 735 -
9e
Zhang D.-H.Li G.-D.Lia J.-X.Chen J.-S. Chem. Commun. 2008, 3414 -
9f
Kawamura M.Sato K. Chem. Commun. 2006, 4718 -
9g
Kawamura M.Sato K. Chem. Commun. 2007, 3404 -
9h
Hu A.Yee GT.Lin W. J. Am. Chem. Soc. 2005, 127: 12486 -
9i
Chouhan G.Wang D.Alper H. Chem. Commun. 2007, 4809 -
9j
Abu-Reziq R.Wang D.Post M.Alper H. Adv. Synth. Catal. 2007, 349: 2145 -
9k
Polshettiwar V.Varma RS. Chem. Eur. J. 2009, 15: 1582 -
9l
Ge J.Zhang Q.Zhang T.Yin Y. Angew. Chem. Int. Ed. 2008, 47: 8924 - 10
Zeng T.Chen W.-W.Cirtiu CM.Moores A.Song G.Li C.-J. Green Chem. 2010, 12: 570 -
11a
Wu X.-J.Jiang R.Wu B.Su X.-M.Xu X.-P.Ji S.-J. Adv. Synth. Catal. 2009, 351: 3150 -
11b
Sreedhar B.Kumar AS.Reddy PS. Tetrahedron Lett. 2010, 51: 1891 -
12a
Buchwald SL.Bolm C. Angew. Chem. Int. Ed. 2009, 48: 5586 -
12b
Larsson P.-F.Correa A.Carril M.Norrby P.-O.Bolm C. Angew. Chem. Int. Ed. 2009, 48: 5691 - 14
Evans DA.Seidel D.Rueping M.Lam HW.Shaw JT.Downey CW. J. Am. Chem. Soc. 2003, 125: 12692 - 16
Kwong FY.Klapars A.Buchwald SL. Org. Lett. 2002, 4: 581
References and Notes
The leaching of Fe residue in the resulting crude material was detected by Thermo Jarrell Ash ICP-AES. No obvious Fe leaching was detected (below detecting limit).
15
Experimental Procedure
Fe3O4 [<50
nm particle size (TEM)], Fe2O3 (<50
nm particle size) and other reagents were purchased from Sigma-Aldrich and
used without further purification. 2-Aryl-1,2,3,4-tetrahydroisoquinolines
were prepared by the literature method.¹6 To
a reaction tube charged with a magnetic stir bar and Fe3O4 nanoparticles
(0.02 mmol, 10 mol%), 1,2,3,4-tetrahydroisoquinoline derivatives
(0.2 mmol), and nitroalkane or acetone (0.5 mL) were added. Then
the tube was filled up with molecular oxygen and stoppered. The reaction
mixture was stirred at 100 ˚C (temperature of
oil bath) for 24 h. The Fe3O4 nanoparticles
were adsorbed on the magnetic stirring bar when the stirring was
stopped. After cooled to r.t., the reaction solution was filtered
through Celite in a pipette eluting with EtOAc. The volatile was removed
in vacuo, and the residue was purified by column chromatography
on silica gel (eluent: hexane-EtOAc = 5:1) to
give the corresponding product. Fe3O4 nanoparticles
were washed with EtOAc, air-dried, and used directly for the next round
of reaction without further purification.
2-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1e)
White
solid. Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.7). ¹H
NMR (400 MHz): δ = 7.26-7.15 (m, 5 H),
6.62-6.60 (m, 1 H), 6.53-6.52 (m, 1 H), 6.41-6.39
(m, 1 H), 4.42 (s, 2 H), 3.82 (s, 3 H), 3.57 (t, J = 5.6
Hz, 2 H), 2.99 (t, J = 6.0
Hz, 2 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
151.9. 134.9, 134.5, 130.0, 128.5, 126.6, 126.4, 126.1, 108.0, 103.3,
101.5, 55.2, 50.6, 46.4, 29.2 ppm. HRMS (APCI): m/z calcd
for C16H18NO [M + 1]+: 240.1383;
found: 240.1381.
2-(3-Methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline
(3i)
Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4).
Light yellow oil. ¹H NMR (400 MHz): δ = 7.28-7.17
(m, 4 H), 7.14-7.12 (m, 1 H), 6.60 (dd, J = 8.4,
2.4 Hz, 1 H), 6.54 (m, 1 H), 6.42 (dd, J = 8.0,
2.0 Hz, 1 H), 5.54 (dd, J = 7.2,
6.8 Hz, 1 H), 4.87 (dd, J = 12.0,
7.2 Hz, 1 H), 4.55 (dd, J = 11.6,
6.8 Hz, 1 H), 3.80 (s, 3 H), 3.66-3.58 (m, 2 H), 3.00 (ddd, J = 16.4,
8.8, 6.4 Hz, 1 H), 2.68 (dt, J = 16.4,
5.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz): δ = 160.9, 149.7,
135.2, 132.9, 130.2, 129.2, 128.2, 127.0, 126.7, 107.5, 104.0, 101.4,
78.8, 58.3, 55.2, 42.1, 26.6 ppm. HRMS (APCI): m/z calcd
for C17H19N2O3 [M + 1]+:
299.1390; found: 299.1391.
2-(3-Methoxyphenyl)-1-(1-nitroethyl)-1,2,3,4-tetrahydroisoquinoline
(3j)
The ratio of isolated diastereomers is 1.7. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.05 (dq, J = 14.8, 6.4
Hz, 1 H), 3.79 (s, 3 H), 1.55 (d, J = 6.4
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.7,
150.2, 134.7, 131.9, 130.0, 128.7, 128.2, 126.6, 107.9, 104.0, 101.8,
85.4, 62.8, 55.2, 42.7, 26.5, 16.3 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 4.88 (dq, J = 14.8, 6.4
Hz, 1 H), 3.82 (s, 3 H), 1.71 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
150.5, 135.6, 133.8, 130.1, 129.1, 128.3, 127.3, 107.2, 103.1, 101.1,
88.9, 61.2, 55.2, 43.5, 26.9, 17.5 ppm.
Other overlapped
peaks: ¹H NMR (400 MHz): δ = 7.27-7.08 (m),
7.01-7.00 (m), 6.62-6.52 (m), 6.40-6.37
(m), 5.25-5.24 (m), 3.85-3.83 (m), 3.58-3.52
(m), 3.52-3.04 (m), 2.96-2.86 (m) ppm. ¹³C
NMR (100 MHz): δ = 126.2 ppm. HRMS (APCI): m/z calcd for C18H21N2O3 [M + 1]+: 313.1547;
found: 313.1549.
2-(3-Methoxyphenyl)-1-(1-nitropropyl)-1,2,3,4-tetrahydroisoquinoline
(3k)
The ratio of isolated diastereomers is 1.6. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.12 (d, J = 9.6
Hz, 1 H), 4.86 (m, 1 H), 3.77 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.5, 150.3, 135.5, 133.8,
130.1, 129.3, 128.5, 128.2, 125.9, 108.3, 103.9, 102.2, 92.9, 62.2,
55.2, 42.3, 25.8, 24.5 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 5.22 (d, J = 9.2
Hz, 1 H), 4.67 (m, 1 H), 3.81 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.7, 150.3, 134.6, 132.1,
129.8, 128.6, 128.2, 127.2, 126.6, 106.8, 102.8, 100.8, 96.1, 60.7,
55.1, 43.5, 26.9, 25.0 ppm.
Other overlapped peaks: ¹H
NMR (400 MHz): δ = 7.26-7.08 (m), 7.01-7.18
(m), 7.00-6.98 (m), 6.62-6.52 (m), 6.40-6.35
(m), 3.87-3.47 (m), 3.12-3.06 (m), 2.93-2.85
(m), 2.26-2.06 (m), 1.86-1.78 (m), 0.96-0.92
(m) ppm. ¹³C NMR (100 MHz): δ = 10.6
ppm. HRMS (APCI): m/z calcd
for C19H23N2O3 [M + 1]+:
327.1703; found: 327.1703.