Synlett 2010(13): 1997-2001  
DOI: 10.1055/s-0030-1258130
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Rasta Resin-PPh3 and its Use in Chromatography-Free Wittig Reactions

Peter Shu-Wai Leung, Yan Teng, Patrick H. Toy*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
Fax: +85228571586; e-Mail: phtoy@hku.hk;
Weitere Informationen

Publikationsverlauf

Received 19 April 2010
Publikationsdatum:
09. Juli 2010 (online)

Abstract

Rasta resin-PPh3, a new heterogeneous polystyrene-based phosphine, has been synthesized and used in one-pot Wittig olefination reactions of aldehydes. In these reactions an excess of rasta resin-PPh3 was used for the in situ generation of the phosphorane reactant and allowed for isolation of a high yield of very pure alkene product after only filtration and solvent removal. The excellent results obtained in this study are attributed to the flexible nature of the rasta resin structure, which makes it less dependant upon swelling than other heterogeneous polystyrene materials previously used to support phosphine reagents in Wittig reactions.

    References and Notes

  • 1a Wittig G. Geissler G. Liebigs Ann. Chem.  1953,  580:  44 
  • 1b Wittig G. Schollkopf U. Chem. Ber.  1954,  87:  1318 
  • 2 Constable DJC. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem.  2007,  9:  411 
  • For the use of a phosphine catalyst in Wittig reactions, see:
  • 3a O’Brien CJ. Tellez JL. Nixon ZS. Kang LJ. Carter AL. Kunkel SR. Przeworski KC. Chass GA. Angew. Chem. Int. Ed.  2009,  48:  6836 
  • 3b Marsden SP. Nature Chem.  2009,  1:  685 
  • For the use of arsine or telluride catalysts in Wittig reactions, see:
  • 4a Shi L. Wang W. Wang Y. Huang Y.-Z. J. Org. Chem.  1989,  54:  2027 
  • 4b Huang Z.-Z. Ye S. Xia W. Yu Y.-H. Tang Y. J. Org. Chem.  2002,  67:  3096 
  • 4c Huang Z.-Z. Tang Y. J. Org. Chem.  2002,  67:  5320 
  • 4d Cao P. Li C.-Y. Kang Y.-B. Xie Z. Sun X.-L. Tang Y. J. Org. Chem.  2007,  72:  6628 
  • 5a Camps F. Castells J. Font J. Vela F. Tetrahedron Lett.  1971,  1715 
  • 5b McKinley SV. Rakshys JW.
    J. Chem. Soc., Chem. Commun.  1972,  134 
  • 5c Heitz W. Michels R. Angew. Chem., Int. Ed. Engl.  1972,  11:  298 
  • 5d Clarke SD. Harrison CR. Hodge P. Tetrahedron Lett.  1980,  21:  1375 
  • 5e Akelah A. Eur. Polym. J.  1982,  18:  559 
  • 5f Bernard M. Ford WT. Nelson EC. J. Org. Chem.  1983,  48:  3164 
  • 6 Westman J. Org. Lett.  2001,  3:  3745 
  • 7a Wu J. Yue C. Synth. Commun.  2006,  36:  2939 ; and references cited therein
  • 7b Choudary BM. Mahendar K. Kantam ML. Ranganath KVS. Athar T. Adv. Symth. Catal.  2006,  348:  1977 
  • 7c El-Batta A. Jiang C. Zhao W. Anness R. Cooksy AL. Bergdahl M. J. Org. Chem.  2007,  72:  5244 
  • For cross-linked polymers, see:
  • 8a Kwok M. Choi W. He HS. Toy PH. J. Org. Chem.  2003,  68:  9831 
  • 8b Zhao LJ. He HS. Shi M. Toy PH. J. Comb. Chem.  2004,  6:  680 
  • For non-cross-linked polymers, see:
  • 9a Harned AM. He HS. Toy PH. Flynn DL. Hanson PR. J. Am. Chem. Soc.  2005,  127:  52 
  • 9b He HS. Yan JJ. Shen R. Zhuo S. Toy PH. Synlett  2006,  563 
  • 9c Kwong CK.-W. Huang R. Zhang M. Shi M. Toy PH. Chem. Eur. J.  2007,  13:  2369 
  • 10 Zhao L.-J. Kwong CK.-W. Shi M. Toy PH. Tetrahedron  2005,  61:  12026 
  • 11 Bernard M. Ford WT. J. Org. Chem.  1983,  48:  326 
  • 12 Lu J. Toy PH. Chem. Rev.  2009,  109:  815 
  • 13a Hodges JC. Harikrishnan LS. Ault-Justus S. J. Comb. Chem.  2000,  2:  80 
  • 13b Lindsley CW. Hodges JC. Filzen GF. Watson BM. Geyer AG. J. Comb. Chem.  2000,  2:  550 
  • 13c McAlpine SR. Lindsley CW. Hodges JC. Leonard DM. Filzen GF. J. Comb. Chem.  2001,  3:  1 
  • 13d Wisnoski DD. Leister WH. Strauss KA. Zhao Z. Lindsley CW. Tetrahedron Lett.  2003,  44:  4321 
  • 13e Fournier D. Pascual S. Montembault V. Haddleton DM. Fontaine L. J. Comb. Chem.  2006,  8:  522 
  • 13f Fournier D. Pascual S. Montembault V. Fontaine L. J. Polym. Sci. A: Polym. Chem.  2006,  44:  5316 
  • 13g Pawluczyk JM. McClain RT. Denicola C. Mulhearn JJ. Rudd DJ. Lindsley CW. Tetrahedron Lett.  2007,  48:  1497 
  • 13h Chen G. Tao L. Mantovani G. Geng J. Nystroem D. Haddleton DM. Macromolecules  2007,  40:  7513 
  • 14a Toy PH. Janda KD. Tetrahedron Lett.  1999,  40:  6329 
  • 14b Toy PH. Reger TS. Janda KD. Aldrichimica Acta  2000,  33:  87 
  • 14c Toy PH. Reger TS. Garibay P. Garno JC. Malikayil JA. Liu G.-Y. Janda KD.
    J. Comb. Chem.  2001,  3:  117 
  • 14d Choi MKW. Toy PH. Tetrahedron  2004,  60:  2903 
  • 17a Yano T. Kuroboshi M. Tanaka H. Tetrahedron Lett.  2010,  51:  698 
  • 17b Yano T. Hoshimo M. Kuroboshi M. Tanaka H. Synlett  2010,  801 
15

See Supporting Information for details.

16

General Procedure for Wittig Reactions To a solution of the aldehyde (0.5 mmol) and the alkyl halide (0.75 mmol) in the appropriate solvent (5 mL), was added RR-PPh3 (1.0 mmol), followed by Et3N (1.0 mmol). The reaction mixture was stirred at the indicated temperature until TLC analysis indicated that the aldehyde was completely consumed, and then filtered through a plug of silica gel. After washing the polymer with CH2Cl2 (2 × 50 mL) the combined filtrate was concentrated in vacuo to afford pure product. All alkene products were characterized by ¹H NMR and ¹³C NMR spectroscopy. Steroeoisomeric ratios were determined by ¹H NMR spectroscopy.