RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258483
The Organocatalytic Enantioselective Michael Addition of Aldehydes to Vinyl Sulfones in Water
Publikationsverlauf
Publikationsdatum:
09. Juli 2010 (online)
Abstract
The first organocatalytic enantioselective Michael addition of aldehydes to vinyl sulfones in water was achieved using our rationally designed organocatalyst. The rigid nature of the tricycle with an inherent chiral pocket provides a well-organized chiral environment, which together with the hydrophobic pocket, enabled this elusive reaction to proceed smoothly in water.
Key words
organocatalytic - vinyl sulfone - Michael addition - aqueous reaction
-
1a
Li CJ.Chan TH. Comprehensive Organic Reactions in Aqueous Media Wiley; Hoboken: 2007. -
1b
Grieco PA. Organic Synthesis in Water Blackie; London: 1998. -
1c
Joó F. Aqueous Organometallic Catalysis Kluwer; Dordrecht: 2001. -
1d
Cornils B.Herrmann WA. Aqueous Phase Organometallic Catalysis. Concepts and Applications Wiley-VCH; Weinheim: 2004. -
1e
Nakamura K.Matsuda T. In Organic Reactions in Water: Principles, Strategies and ApplicationsLindström UM. Blackwell; Oxford: 2007. p.301-349 -
1f
Breslow R. Acc. Chem. Res. 1991, 24: 159 -
1g
Li CJ. Chem. Rev. 1993, 93: 2023 -
1h
Kobayashi S.Manabe K. Acc. Chem. Res. 2002, 35: 209 -
1i
Li CJ. Chem. Rev. 2005, 105: 3095 -
1j
Li CJ.Chen L. Chem. Soc. Rev. 2006, 35: 68 -
1k
Herrerias CI.Yao X.Li Z.Li CJ. Chem. Rev. 2007, 107: 2546 -
1l
Dallinger D.Kappe CO. Chem. Rev. 2007, 107: 2563 -
1m
Minakata S.Komatsu M. Chem. Rev. 2009, 109: 711 -
1n
Chanda A.Fokin VV. Chem. Rev. 2009, 109: 725 - For reviews on stereoselective organic reactions in aqueous media, see:
-
2a
Sinou D. Adv. Synth. Catal. 2002, 344: 221 -
2b
Lindström UM. Chem. Rev. 2002, 102: 2751 -
2c
Manabe K.Kobayashi S. Chem. Eur. J. 2002, 8: 4094 -
2d
Dwars T.Oehme G. Adv. Synth. Catal. 2002, 344: 239 -
2e
Pan C.Wang Z. Coord. Chem. Rev. 2008, 252: 736 -
2f
Genêt JP.Darses S.Michelet V. Pure Appl. Chem. 2008, 80: 831 - For reviews on organocatalysis in water, see:
-
3a
Gruttadauria M.Giacalone F.Notoa R. Adv. Synth. Catal. 2009, 351: 33 - For valuable discussions, see:
-
3b
Brogan AP.Dickerson TJ.Janda KD. Angew. Chem. Int. Ed. 2006, 45: 8100 -
3c
Blackmond DG.Armstrong A.Coombe V.Wells A. Angew. Chem. Int. Ed. 2007, 46: 3798 -
3d
Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 8103 -
3e
Jung Y.Marcus RA. J. Am. Chem. Soc. 2007, 129: 5492 - For leading references, see:
-
3f
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734 -
3g
Hayashi Y.Sumiya T.Takahashi J.Gotoh H.Urushima T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 958 - For descriptions of sulfone chemistry, see:
-
4a
Simpkins NS. Sulfones in Organic Synthesis Pergamon; Oxford: 1993. -
4b
Toru T.Bolm C. Organosulfur Chemistry in Asymmetric Synthesis Wiley-VCH; Weinheim: 2008. - For reviews, see:
-
4c
El-Awa A.Noshi MN.Jourdin XM.Fuchs PL. Chem. Rev. 2009, 109: 2315 -
4d
Meadows DC.Gervay-Hague J. Med. Res. Rev. 2006, 26: 793 -
4e
Trost BM. Bull. Chem. Soc. Jpn. 1988, 61: 107 -
4f
Nájera C.Yus M. Tetrahedron 1999, 55: 10547 - For asymmetric organocatalysis with sulfones, see:
-
4g
Nielsen M.Jacobsen CB.Holub N.Paixão MW.Jørgensen KA. Angew. Chem. Int. Ed. 2010, 49: 2668 -
4h
Zhu Q.Lu Y. Aust. J. Chem. 2009, 62: 951 -
5a
Risaliti A.Fatutta S.Forchiassin M. Tetrahedron 1967, 23: 1451 -
5b
Forchiassin M.Risaliti A.Russo C.Calligaris M.Pitacco G. J. Chem. Soc., Perkin Trans. 1 1974, 660 -
5c
Benedetti F.Fabrissin S.Risaliti A. Tetrahedron 1984, 40: 977 -
5d
Modena G.Pasquato L.DeLucchi O. Tetrahedron Lett. 1984, 25: 3643 -
6a
Mossé S.Alexakis A. Org. Lett. 2005, 7: 4361 -
6b
Mossé S.Laars M.Kriis K.Kanger T.Alexakis A. Org. Lett. 2006, 8: 2559 -
6c
Quintard A.Bournaud C.Alexakis A. Chem. Eur. J. 2008, 14: 7504 -
6d
Mossé S.Alexakis A.Mareda J.Bollot G.Bernardinelli G.Filinchuk Y. Chem. Eur. J. 2009, 15: 3204 - 7
Landa A.Maestro M.Masdeu C.Puente A.Vera S.Oiarbide M.Palomo C. Chem. Eur. J. 2009, 15: 1562 - 8
Zhu Q.Lu Y. Org. Lett. 2008, 10: 4803 - For Michael reactions of aldehydes to nitroolefins in water, see:
-
9a
Mase N.Watanabe K.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 4966 -
9b
Zu L.Wang J.Li H.Wang W. Org. Lett. 2006, 8: 3077 -
9c
Zhu SL.Yu SY.Ma DW. Angew. Chem. Int. Ed. 2008, 47: 545 -
9d
Belot S.Massaro A.Tenti A.Mordini A.Alexakis A. Org. Lett. 2008, 10: 4557 -
9e
Zheng Z.Perkins BL.Ni B. J. Am. Chem. Soc. 2010, 132: 50 -
9f
Wu J.Ni B.Headley AD. Org. Lett. 2009, 11: 3354 -
10a
Xiao J.Loh TP. Synlett 2007, 815 -
10b
Xiao J.Loh TP. Org. Lett. 2009, 11: 2876 -
10c
Xiao J.Xu FX.Lu YP.Loh TP. Org. Lett. 2010, 12: 1220 -
10d
Xiao J.Wong ZZ.Lu YP.Loh TP. Adv. Synth. Catal. 2010, 352: 1107 -
10e
Loh TP.Chua GL. Chem. Commun. 2006, 2739 ; and references cited therein -
11a
Taniguchi M.Hino T. Tetrahedron 1981, 37: 1487 -
11b
Bourne GT.Crich D.Davies JW.Horwell DC. J. Chem. Soc., Perkin Trans. 1 1991, 1693 -
11c
Crich D.Banerjee A. Acc. Chem. Res. 2007, 40: 151 -
11d
Xiao J.Loh TP. Tetrahedron Lett. 2008, 49: 7184
Reference and Notes
Typical Reaction
Procedure
To a mixture of 1,1-bis(phenylsulfonyl)ethylene
(31 mg, 0.1 mmol), catalyst I (2.8 mg,
0.01 mmol), and DMAP (1.2 mg, 0.01 mmol) in H2O (0.5
mL) was added isoveraldehyde (34.4 mg, 0.4 mmol) and stirred vigorously
for 12 h at r.t. Then MeOH (1 mL) was added and the mixture was
cooled to 0 ˚C before NaBH4 (8 mg, 0.2 mmol)
was added. After stirring at 0 ˚C for 0.5 h, the mixture
was extracted with EtOAc (3 × 5 mL). The combined organic
layers were washed with brine (5 mL), dried over anhyd MgSO4,
and concentrated under reduced pressure. The desired products were
purified with silica gel column chromatography (EtOAc-hexanes = 1:2).
The ee was determined by HPLC with Chiralpak AS-H column at 220
nm (2-PrOH-hexane = 20:80),
0.5 mL/min, t
R(major) = 40.0
min, t
R
(minor) = 47.0
min; [α]D
²0 +3.1
(c 2.3, CHCl3, 589 nm); yellow
light solid; R
f
= 0.15
(EtOAc-hexane = 1:2). ¹H NMR
(300 MHz, CDCl3): δ = 7.98-7.93
(m, 4 H), 7.72-7.67 (m, 2 H), 7.59-7.54 (m, 4
H), 5.22 (dd, J = 3.3,
7.2 Hz, 1 H), 3.73 (dd, J = 3.3,
11.0 Hz, 1 H), 3.51 (dd, J = 7.9,
11.0 Hz, 1 H), 2.37-2.13 (m, 2 H), 1.78-1.57 (m,
3 H), 0.85 (d, J = 3.4 Hz,
3 H), 0.82 (d, J = 3.4
Hz, 3 H). ¹³C NMR (75 Hz, CDCl3): δ = 138.0,
137.7, 134.5, 129.7, 129.5, 129.1, 129.0, 81.6, 64.7, 44.4, 29.8,
26.1, 19.4, 19.2. HRMS (ESI-TOF): m/z calcd
for C19H25SO2: 333.1347 [M + H]+;
found: 333.1342.