RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258566
3,3′-Bis(arylbenzofurans) via a Gold-Catalyzed Domino Process
Publikationsverlauf
Publikationsdatum:
10. September 2010 (online)
Abstract
A new heterogeneous gold-catalyzed system for the domino cyclization oxidative coupling of 2-alkynyl phenols for the formation of 3,3′-bisbenzofurans was developed. The substrate and the catalyst scope as well as the reaction conditions were investigated and optimized. This method provides access to this novel structural theme in two steps starting from commercially available chemicals. The molecular structure of the 3,3′-bisbenzofurans was confirmed by single-crystal X-ray analysis.
Key words
domino process - gold catalysis - 3,3′-bisbenzofurans - dimerization - oxidative coupling
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Hou XL.Yang Z.Yeung KS.Wong HNC. Progress in Heterocyclic Chemistry Vol. 19:Gribble GW.Joule JA. Elsevier; Oxford: 2008. p.176 ; and previous volumes in the series - For recent work on benzofurans of pharmacological interest, see:
-
1b
Carlsson B.Singh BN.Temciuc M.Nilsson S.Li Y.-L.Mellin C.Malm J. J. Med. Chem. 2002, 45: 623 -
1c
Flynn BL.Hamel E.Jung MK. J. Med. Chem. 2002, 45: 2670 -
1d
Sall DJ.Bailey DL.Bastian JA.Buben JA.Chirgadze NY.Clemens-Smith AC.Denney ML.Fisher MJ.Giera DD.Gifford-Moore DS.Harper RW.Johnson LM.Klimkowski VJ.Kohn TJ.Lin H.-S.McCowan JR.Palkowitz AD.Richett ME.Smith GF.Snyder DW.Takeuchi K.Toth JE.Zhang M. J. Med. Chem. 2000, 43: 649 - 2
Erber S.Ringshandl R.von Angerer E. Anti-Cancer Drug Des. 1991, 6: 417 - 3
Malamas MS.Sredy J.Moxham C.Katz A.Xu WX.McDevitt R.Adebayo FO.Sawicki DR.Seestaller L.Sullivan D.Taylor JR. J. Med. Chem. 2000, 43: 1293 -
4a
Watanabe Y.Yoshiwara H.Kanao M. J. Heterocycl. Chem. 1993, 30: 445 -
4b
McCallion GD. Curr. Org. Chem. 1999, 3: 67 - 5
McAllister GD.Hartley RC.Dawson MJ.Knaggs AR. J. Chem. Soc., Perkin Trans. 1 1998, 3453 -
6a
Piloto AM.Fonseca ASC.Costa SPG.Gonçalves MST. Tetrahedron 2006, 62: 9258 -
6b
Piloto AM.Costa SPG.Gonçalves MST. Tetrahedron Lett. 2005, 46: 4757 - 7
Yang L.-Y.Chang C.-F.Huang Y.-C.Lee Y.-J.Hu C.-C.Tseng T.-H. Synthesis 2009, 1175 -
8a
Kim S.-I.Park I.-H.Song K.-S. J. Antibiot. 2002, 7: 623 -
8b
Song K.-S.Raskin I. J. Nat. Prod. 2002, 65: 76 - 9
Bakunova SM.Bakunov SA.Wenzler T.Barszcz T.Werbovetz KA.Brun R.Hall JE.Tidwell RR.
J. Med. Chem. 2007, 50: 5807 - 10
Kirilmis C.Koca M.Çukurovali A.Ahmedzade M.Kazaz C. Molecules 2005, 10: 1399 - 11
Bakunova SM.Bakunov SA.Wenzler T.Barszcz T.Werbovetz KA.Brun R.Hall JE.Tidwell RR.
J. Med. Chem. 2007, 50: 5807 - 12
Benincori T.Brenna E.Sannicolò F.Trimarco L.Antognazza P.Cesarotti E.Demartin F.Pilati T. J. Org. Chem. 1996, 61: 6244 -
13a
Hashmi ASK.Enns E.Frost TM.Schäfer S.Schuster A.Frey W.Rominger F. Synthesis 2008, 2707 -
13b
Zhang Y.Xin Z.-J.Xue J.-J.Li Y. Chin. J. Chem. 2008, 26: 1461 -
13c
Belting V.Krause N. Org. Lett. 2006, 8: 4489 -
13d
Hashmi ASK.Frost TM.Bats JW. Org. Lett. 2001, 3: 3769 -
14a
Cui L.Zhang G.Zhang L. Bioorg. Med. Chem. Lett. 2009, 19: 3884 -
14b
Zhang G.Peng Y.Cui L.Zhang L. Angew. Chem. Int. Ed. 2009, 48: 3112 -
14c
Wegner HA. Chimia 2009, 63: 44 -
14d
Kar A.Mangu N.Kaiser HM.Beller M.Tse MK. Chem. Commun. 2008, 386 -
14e
Hashmi ASK.Blanco MC.Fischer D.Bats JW. Eur. J. Org. Chem. 2006, 1387 -
14f
Zhang G.Cui L.Wang Y.Zhang L. J. Am. Chem. Soc. 2010, 132: 1474 -
14g
Hashmi ASK.Ramamurthi TD.Rominger F. J. Organomet. Chem. 2009, 694: 592 - 15
de Haro T.Nevado C. J. Am. Chem. Soc. 2010, 132: 1512 - 16
Iglesias A.Muñiz K. Chem. Eur. J. 2009, 15: 10563 -
17a
Kar A.Mangu N.Kaiser HM.Tse MK.
J. Organomet. Chem. 2009, 694: 524 -
17b
Hopkinson MN.Tessier A.Salisbury A.Giuffredi GT.Combettes LE.Gee AD.Gouverneur V. Chem. Eur. J. 2010, 16: 4739 - 18
Tietze LF.Brasche G.Gericke KM. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 19
Wegner HA.Ahles S.Neuburger M. Chem. Eur. J. 2008, 14: 11310 - 20 For a recent example of a transition-metal-catalyzed
domino reaction, see:
Leibeling M.Koester DC.Pawliczek M.Schild SC.Werz DB. Nat. Chem. Biol. 2010, 6: 199 - 21
Hashmi ASK.Ramamurthi TD.Rominger F. Adv. Synth. Catal. 2010, 352: 971 - 22
Hashmi ASK.Lothschuetz C.Ackermann M.Doepp R.Anantharaman S.Marchetti B.Bertagnolli H.Rominger F. Chem. Eur. J. 2010, 16: 8012 - 23
Pelter A.Elgendy SMA. J. Chem. Soc., Perkin Trans. 1 1993, 1891
References and Notes
The procedure described for compound 2a was applied for compounds 2b-g.
HAuCl4 (17.5 mg, 10 mol%) was placed into a
20 mL vial (well dried), equipped with a stir bar. Et2O (10
mL) was added, and the mixture was stirred for 5 min at r.t. Then,
2-alkynlphenol (100 mg, 1 equiv) was added first, followed by PhI(OAc)2 (848
mg, 5 equiv) 5 min later. The mixture was stirred at r.t. overnight.
The reaction mixture was filtered and concentrated. The crude product
was purified by flash column chromatography or on preparative TLC.
Compound 2a was isolated as a white powder
with a yield of 37% (37 mg); mp 179-181 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.80-7.74
(m, 4 H), 7.63 (d, J = 8.2
Hz, 2 H), 7.33 (m, 2 H), 7.29-7.20 (m, 6 H), 7.17-7.07
(m, 4 H).
¹³C NMR (101 MHz,
CDCl3): δ = 154.76 (2 C), 152.37 (2
C), 130.84 (2 C), 129.87 (2 C), 128.98 (4 C), 128.92 (2 C), 126.62
(4 C), 125.32 (2 C), 123.41 (2 C), 121.11 (2 C), 111.62 (2 C), 108.07
(2 C). ESI-HRMS: m/z calcd for [C28H18O2Na]+:
409.1204 [M + Na]+;
found: 409.1199.
MS (EI): m/z (%) = 386.1
(100) [M+], 308.1 (9), 281.1
(7).
IR: ν = 1600, 1588, 1486, 1470,
1454, 1439, 1338, 1288, 1254, 1203, 1109, 1063, 1026, 1008, 920
cm-¹.
Crystallographic data for compounds 2a and 2b have been deposited at the Cambridge Crystallographic Data Center, the respective deposition numbers are 772967 and 772968.