Abstract
A new heterogeneous gold-catalyzed system for the domino cyclization
oxidative coupling of 2-alkynyl phenols for the formation of 3,3′-bisbenzofurans
was developed. The substrate and the catalyst scope as well as the
reaction conditions were investigated and optimized. This method
provides access to this novel structural theme in two steps starting
from commercially available chemicals. The molecular structure of
the 3,3′-bisbenzofurans was confirmed by single-crystal
X-ray analysis.
Key words
domino process - gold catalysis - 3,3′-bisbenzofurans - dimerization - oxidative coupling
References and Notes
1a
Hou XL.
Yang Z.
Yeung KS.
Wong HNC.
Progress in Heterocyclic
Chemistry
Vol. 19:
Gribble
GW.
Joule JA.
Elsevier;
Oxford:
2008.
p.176 ; and previous volumes in the series
For recent work on benzofurans of pharmacological interest,
see:
1b
Carlsson B.
Singh BN.
Temciuc M.
Nilsson S.
Li Y.-L.
Mellin C.
Malm J.
J.
Med. Chem.
2002,
45:
623
1c
Flynn BL.
Hamel E.
Jung MK.
J. Med. Chem.
2002,
45:
2670
1d
Sall DJ.
Bailey DL.
Bastian JA.
Buben JA.
Chirgadze NY.
Clemens-Smith AC.
Denney ML.
Fisher MJ.
Giera DD.
Gifford-Moore DS.
Harper
RW.
Johnson LM.
Klimkowski VJ.
Kohn TJ.
Lin
H.-S.
McCowan JR.
Palkowitz AD.
Richett ME.
Smith GF.
Snyder DW.
Takeuchi K.
Toth JE.
Zhang M.
J. Med. Chem.
2000,
43:
649
2
Erber S.
Ringshandl R.
von Angerer E.
Anti-Cancer Drug
Des.
1991,
6:
417
3
Malamas MS.
Sredy J.
Moxham C.
Katz A.
Xu
WX.
McDevitt R.
Adebayo FO.
Sawicki DR.
Seestaller L.
Sullivan D.
Taylor JR.
J.
Med. Chem.
2000,
43:
1293
4a
Watanabe Y.
Yoshiwara H.
Kanao M.
J. Heterocycl. Chem.
1993,
30:
445
4b
McCallion GD.
Curr. Org. Chem.
1999,
3:
67
5
McAllister GD.
Hartley RC.
Dawson MJ.
Knaggs
AR.
J.
Chem. Soc., Perkin Trans. 1
1998,
3453
6a
Piloto AM.
Fonseca ASC.
Costa SPG.
Gonçalves MST.
Tetrahedron
2006,
62:
9258
6b
Piloto AM.
Costa SPG.
Gonçalves MST.
Tetrahedron
Lett.
2005,
46:
4757
7
Yang L.-Y.
Chang C.-F.
Huang Y.-C.
Lee Y.-J.
Hu
C.-C.
Tseng T.-H.
Synthesis
2009,
1175
8a
Kim S.-I.
Park I.-H.
Song K.-S.
J. Antibiot.
2002,
7:
623
8b
Song K.-S.
Raskin I.
J. Nat. Prod.
2002,
65:
76
9
Bakunova SM.
Bakunov SA.
Wenzler T.
Barszcz T.
Werbovetz KA.
Brun R.
Hall JE.
Tidwell RR.
J. Med.
Chem.
2007,
50:
5807
10
Kirilmis C.
Koca M.
Çukurovali A.
Ahmedzade M.
Kazaz C.
Molecules
2005,
10:
1399
11
Bakunova SM.
Bakunov SA.
Wenzler T.
Barszcz T.
Werbovetz KA.
Brun R.
Hall JE.
Tidwell RR.
J. Med.
Chem.
2007,
50:
5807
12
Benincori T.
Brenna E.
Sannicolò F.
Trimarco L.
Antognazza P.
Cesarotti E.
Demartin F.
Pilati T.
J. Org. Chem.
1996,
61:
6244
13a
Hashmi ASK.
Enns E.
Frost TM.
Schäfer S.
Schuster A.
Frey W.
Rominger F.
Synthesis
2008,
2707
13b
Zhang Y.
Xin Z.-J.
Xue J.-J.
Li Y.
Chin. J. Chem.
2008,
26:
1461
13c
Belting V.
Krause N.
Org. Lett.
2006,
8:
4489
13d
Hashmi ASK.
Frost TM.
Bats JW.
Org. Lett.
2001,
3:
3769
14a
Cui L.
Zhang G.
Zhang L.
Bioorg. Med. Chem. Lett.
2009,
19:
3884
14b
Zhang G.
Peng Y.
Cui L.
Zhang L.
Angew. Chem. Int. Ed.
2009,
48:
3112
14c
Wegner HA.
Chimia
2009,
63:
44
14d
Kar A.
Mangu N.
Kaiser HM.
Beller M.
Tse MK.
Chem.
Commun.
2008,
386
14e
Hashmi ASK.
Blanco MC.
Fischer D.
Bats JW.
Eur.
J. Org. Chem.
2006,
1387
14f
Zhang G.
Cui L.
Wang Y.
Zhang L.
J. Am. Chem. Soc.
2010,
132:
1474
14g
Hashmi ASK.
Ramamurthi TD.
Rominger F.
J. Organomet. Chem.
2009,
694:
592
15
de Haro T.
Nevado C.
J. Am. Chem. Soc.
2010,
132:
1512
16
Iglesias A.
Muñiz K.
Chem. Eur. J.
2009,
15:
10563
17a
Kar A.
Mangu N.
Kaiser HM.
Tse MK.
J.
Organomet. Chem.
2009,
694:
524
17b
Hopkinson
MN.
Tessier A.
Salisbury A.
Giuffredi GT.
Combettes LE.
Gee AD.
Gouverneur V.
Chem. Eur. J.
2010,
16:
4739
18
Tietze LF.
Brasche G.
Gericke KM.
Domino
Reactions in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
19
Wegner HA.
Ahles S.
Neuburger M.
Chem.
Eur. J.
2008,
14:
11310
20 For a recent example of a transition-metal-catalyzed
domino reaction, see: Leibeling M.
Koester DC.
Pawliczek M.
Schild SC.
Werz DB.
Nat.
Chem. Biol.
2010,
6:
199
21
Hashmi ASK.
Ramamurthi TD.
Rominger F.
Adv. Synth. Catal.
2010,
352:
971
22
Hashmi ASK.
Lothschuetz C.
Ackermann M.
Doepp R.
Anantharaman S.
Marchetti B.
Bertagnolli H.
Rominger F.
Chem. Eur.
J.
2010,
16:
8012
23
Pelter A.
Elgendy SMA.
J. Chem.
Soc., Perkin Trans. 1
1993,
1891
24 The procedure described for compound 2a was applied for compounds 2b -g .
HAuCl4 (17.5 mg, 10 mol%) was placed into a
20 mL vial (well dried), equipped with a stir bar. Et2 O (10
mL) was added, and the mixture was stirred for 5 min at r.t. Then,
2-alkynlphenol (100 mg, 1 equiv) was added first, followed by PhI(OAc)2 (848
mg, 5 equiv) 5 min later. The mixture was stirred at r.t. overnight.
The reaction mixture was filtered and concentrated. The crude product
was purified by flash column chromatography or on preparative TLC.
Compound 2a was isolated as a white powder
with a yield of 37% (37 mg); mp 179-181 ˚C. ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.80-7.74
(m, 4 H), 7.63 (d, J = 8.2
Hz, 2 H), 7.33 (m, 2 H), 7.29-7.20 (m, 6 H), 7.17-7.07
(m, 4 H).
¹³ C NMR (101 MHz,
CDCl3 ): δ = 154.76 (2 C), 152.37 (2
C), 130.84 (2 C), 129.87 (2 C), 128.98 (4 C), 128.92 (2 C), 126.62
(4 C), 125.32 (2 C), 123.41 (2 C), 121.11 (2 C), 111.62 (2 C), 108.07
(2 C). ESI-HRMS: m/z calcd for [C28 H18 O2 Na]+ :
409.1204 [M + Na]+ ;
found: 409.1199. MS (EI): m/z (%) = 386.1
(100) [M+ ], 308.1 (9), 281.1
(7). IR: ν = 1600, 1588, 1486, 1470,
1454, 1439, 1338, 1288, 1254, 1203, 1109, 1063, 1026, 1008, 920
cm-¹ .
25 Crystallographic data for compounds 2a and 2b have
been deposited at the Cambridge Crystallographic Data Center, the
respective deposition numbers are 772967 and 772968.