RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259039
Regioselective Synthesis of Optically Active Trifluoromethyl Group Substituted Allylic Amines by Palladium-Catalyzed Allylic Amination
Publikationsverlauf
Publikationsdatum:
10. November 2010 (online)
Abstract
We succeeded in the regioselective synthesis of chiral trifluoromethyl group substituted allylic amines from chiral allyl acetate using two types of palladium catalysts. Furthermore, we found that the kinetic resolution had occurred during the isomerization step from the γ-type product to the α-type product by the [Pd(C3H5)(cod)]BF4/(S)-BINAP catalyst.
Key words
palladium catalyst - allylic amination - trifluoromethyl group - chiral allylic amine - kinetic resolution
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century John Wiley and Sons; Chichester: 2004. -
1b
Tsuji J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis Wiley and Sons; Chichester: 2000. -
1c
Trost BM.Lee CB. In Catalytic Asymmetric Synthesis IIOjima I. Wiley-VCH; Weinheim: 2000. -
1d
Pfaltz A.Lautens M. In Comprehensive Asymmetric Catalysis I-IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. -
1e
Hayashi T. In Catalytic Asymmetric SynthesisOjima I. Wiley-VCH; Weinheim: 1993. -
2a
Jørgensen KA. In Modern Amination MethodsRicci A. Wiley-VCH; Weinheim: 2000. Chap. 1. p.1 -
2b
Johannsen M.Jørgensen KA. Chem. Rev. 1998, 98: 1689 - Selected examples of transition-metal-catalyzed allylic aminations of allylic esters: for [Pd]
-
3a
Dubovyk I.Watson IDG.Yudin AK. J. Am. Chem. Soc. 2007, 129: 14172 -
3b
Johns AM.Liu Z.Hartwig JF. Angew. Chem. Int. Ed. 2007, 46: 7259 -
3c
Faller JW.Wilt JC. Org. Lett. 2005, 7: 633 ; and references therein - For [Ir]:
-
3d
Takeuchi R.Ue N.Tanabe K.Yamashita K.Shiga N. J. Am. Chem. Soc. 2001, 123: 9525 -
3e
Ohmura T.Hartwig JF. J. Am. Chem. Soc. 2002, 124: 15164 -
3f
Leitner A.Shekhar S.Pouy MJ.Hartwig JF. J. Am. Chem. Soc. 2005, 127: 15506 -
3g
Polet D.Alexakis A.Tissot-Croset K.Corminboeuf C.Ditrich K. Chem. Eur. J. 2006, 12: 3596 -
3h
Weihofen R.Tverskoy O.Helmchen G. Angew. Chem. Int. Ed. 2006, 45: 5546 ; and references therein - For [Rh]:
-
3i
Evans PA.Robinson JE.Nelson JD. J. Am. Chem. Soc. 1999, 121: 6761 -
3j
Evans PA.Robinson JE.Nelson JD. J. Am. Chem. Soc. 1999, 121: 12214 - For [Ru]:
-
3k
Morisaki Y.Kondo T.Mitsudo T. Organometallics 1999, 18: 4742 -
3l
Matsushima Y.Onitsuka K.Kondo T.Mitsudo T.Takahashi S. J. Am. Chem. Soc. 2001, 123: 10405 -
3m
Matsushima Y.Onitsuka K.Takahashi S. Organometallics 2004, 23: 3763 -
3n
Kawatsura M.Ata F.Hirakawa T.Hayase S.Itoh T. Tetrahedron Lett. 2008, 49: 4873 ; and references cited therein - Examples of allylic substitutions of fluorinated allyl substrates:
-
4a
Hanzawa Y.Ishizawa S.Kobayashi Y. Chem. Pharm. Bull. 1988, 36: 4209 -
4b
Hanzawa Y.Ishizawa S.Ito H.Kobayashi Y.Taguchi T. J. Chem. Soc., Chem. Commun. 1990, 394 -
4c
Fish PV.Reddy SP.Lee CH.Johnson WS. Tetrahedron Lett. 1992, 33: 8001 -
4d
Konno T.Ishihara T.Yamanaka H. Tetrahedron Lett. 2000, 41: 8467 -
4e
Okano T.Matsubara H.Kusukawa T.Fujita M. J. Organomet. Chem. 2003, 676: 43 -
4f
Konno T.Takehana T.Ishihara T.Yamanaka H. Org. Biomol. Chem. 2004, 2: 93 -
4g
Konno T.Takehana T.Mishima M.Ishihara T. J. Org. Chem. 2006, 71: 3545 -
4h
Kawatsura M.Wada S.Hayase S.Itoh T. Synlett 2006, 2483 - 5
Konno T.Nagata K.Ishihara T.Yamanaka H. J. Org. Chem. 2002, 67: 1768 - 6
Kawatsura M.Hirakawa T.Tanaka T.Ikeda D.Hayase S.Itoh T. Tetrahedron Lett. 2008, 49: 2450 - Examples of net retention mechanism in the palladium-catalyzed allylic substitutions:
-
7a
Hayashi T.Hagihara T.Konishi M.Kumada M. J. Am. Chem. Soc. 1983, 105: 7767 -
7b
Hayashi T.Yamamoto A.Hagihara T. J. Org. Chem. 1986, 51: 723 -
7c
Trost BM.Toste FD. J. Am. Chem. Soc. 1999, 121: 4545 - Selected examples of kinetic resolution in the palladium-catalyzed allylic substitutions of disubstituted symmetrical or monosubstituted allylic esters:
-
12a
Cook GR. Curr. Org. Chem. 2000, 4: 869 -
12b
Robinson DEJE.Bull SD. Tetrahedron: Asymmetry 2003, 14: 1407 -
12c
Longmire JM.Wang B.Zhang X. Tetrahedron Lett. 2000, 41: 5435 -
12d
Reetz MT.Sostmann S. J. Organomet. Chem. 2000, 603: 105 -
12e
Gilbertson SR.Lan P. Org. Lett. 2001, 3: 2237 -
12f
Cook GR.Sankaranarayanan S. Org. Lett. 2001, 3: 3531 -
12g
Lüssem BJ.Gais H.-J. J. Org. Chem. 2004, 69: 4041 -
12h
Castillo AB.Favier I.Teuma E.Castillón S.Godard C.Aghmiz A.Claver C.Gómez M. Chem. Commun. 2008, 6197 -
12i
Hou XL.Zheng BH. Org. Lett. 2009, 11: 1789 ; and references cited therein - Examples of kinetic resolution in the palladium-catalyzed allylic substitutions of 1,3-disubstituted unsymmetrical allylic esters:
-
13a
Hayashi T.Yamamoto A.Ito Y.
J. Chem. Soc., Chem. Commun. 1986, 1090 -
13b
Faller JW.Wilt JC. Tetrahedron Lett. 2004, 45: 7613 - 15
Kagan HB.Fiaud JC. Top. Stereochem. 1988, 18: 249
References and Notes
We observed the racemization of allylic amines took place by palladium catalysts. For example, the ee of (R)-4a decreased from 88% to 80% by Pd(OAc)2/DPPE at 60 ˚C for 12 h, and the ee of (S)-3a also decreased from 98% to 13% by [Pd(C3H5)(cod)]BF4/(S)-BINAP at 100 ˚C for 12 h.
9We also confirmed the reaction with
10 mol% of [Pd(C3H5)(cod)]BF4/BIPHEP [2,2′-bis(diphenyl-phosphino)-1,1′-biphenyl] gave
an α-product with 96% regioselectivity at 60 ˚C,
but the ee decreased to 66%.
Typical Procedure
for the [Pd(C
3
H
5
)(cod)]BF
4
/(
S
)-BINAP-Catalyzed Allylic Amination of (
S
)-1 with 2a
To
a solution of [Pd(C3H5)(cod)]BF4 (7.0
mg, 0.021 mmol), (S)-BINAP (12.8 mg,
0.021 mmol), (S)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl
acetate [(S)-1,
50 mg, 0.21 mmol] in dioxane (1.0 mL) was added morpholine
(2a) and stirred at r.t. for 5 min and
40 ˚C for 12 h. The reaction mixture was quenched with
brine and H2O (1 mL), then extracted with EtOAc (3 × 2
mL). The combined organic layers were dried over MgSO4 and
concentrated in vacuo. The NMR yield (95%, trioxane as
an internal standard) and ratio of 3a and 4a was determined by ¹H
NMR of the crude materials.
Analytical
Data of 3a
[α]D
²6 +69.2 [c 1.37, CHCl3; 99% ee
(S)]. The enantiomeric purity
was determined to be 99% ee by HPLC analysis with a Daicel
CHIRALPAK AD-H [hexane-2-PrOH (99:1), flow: 1.0
mL/min, 254 nm, 35 ˚C, t
major = 11.2
min, t
minor = 13.0
min]. ¹H NMR (500 MHz, CDCl3): δ = 2.71-2.80
(m, 4 H), 3.60 (quin, J = 8.2
Hz, 1 H), 3.72 (t, J = 4.6 Hz,
4 H), 6.18 (dd, J = 8.2,
16.0 Hz, 1 H), 6.72 (d, J = 16.0 Hz,
1 H), 7.28-7.42 (m, 5 H). ¹³C
NMR (125 MHz, CDCl3): δ = 50.4, 67.2,
68.6 (q, J
CF = 27.5
Hz), 118.5, 125.7 (q, J
CF = 285.0
Hz), 126.7, 128.5, 128.7, 135.7, 137.5. ¹9F
NMR (470 MHz, CDCl3): δ = 92.0 (d, J = 8.2 Hz).
HRMS (EI):
m/z calcd
for C14H16F3NO: 271.1184; found:
271.1195.
The absolute configuration of (S)-3a and (R)-4a were determined by the comparison of the X-ray crystallographic analysis of the products from the reaction of (S)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-yl acetate with 1-phenylpiperazine. See details in the Supporting Information.
14Calculated by eeP and eeS. S = ln[(1 - c)(1 + eeP)]/ln[(1 - c) (1 - eeP)]. c = eeS/(eeS + eeP).