References and Notes
1a
Tsuji J.
Palladium Reagents and Catalysts:
New Perspectives for the 21st Century
John Wiley
and Sons;
Chichester:
2004.
1b
Tsuji J.
Transition
Metal Reagents and Catalysts: Innovations in Organic Synthesis
Wiley
and Sons;
Chichester:
2000.
1c
Trost BM.
Lee CB.
In Catalytic
Asymmetric Synthesis II
Ojima I.
Wiley-VCH;
Weinheim:
2000.
1d
Pfaltz A.
Lautens M. In Comprehensive Asymmetric
Catalysis I-III
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
1e
Hayashi T. In Catalytic
Asymmetric Synthesis
Ojima I.
Wiley-VCH;
Weinheim:
1993.
2a
Jørgensen KA. In
Modern Amination Methods
Ricci A.
Wiley-VCH;
Weinheim:
2000.
Chap.
1.
p.1
2b
Johannsen M.
Jørgensen KA.
Chem.
Rev.
1998,
98:
1689
Selected examples of transition-metal-catalyzed
allylic aminations of allylic esters: for [Pd]
3a
Dubovyk I.
Watson IDG.
Yudin AK.
J. Am. Chem. Soc.
2007,
129:
14172
3b
Johns AM.
Liu Z.
Hartwig JF.
Angew. Chem. Int. Ed.
2007,
46:
7259
3c
Faller JW.
Wilt JC.
Org.
Lett.
2005,
7:
633 ;
and references therein
For [Ir]:
3d
Takeuchi R.
Ue N.
Tanabe K.
Yamashita K.
Shiga N.
J. Am. Chem.
Soc.
2001,
123:
9525
3e
Ohmura T.
Hartwig JF.
J. Am. Chem. Soc.
2002,
124:
15164
3f
Leitner A.
Shekhar S.
Pouy MJ.
Hartwig JF.
J. Am. Chem. Soc.
2005,
127:
15506
3g
Polet D.
Alexakis A.
Tissot-Croset K.
Corminboeuf C.
Ditrich K.
Chem.
Eur. J.
2006,
12:
3596
3h
Weihofen R.
Tverskoy O.
Helmchen G.
Angew.
Chem. Int. Ed.
2006,
45:
5546 ;
and references therein
For [Rh]:
3i
Evans PA.
Robinson JE.
Nelson JD.
J. Am. Chem. Soc.
1999,
121:
6761
3j
Evans PA.
Robinson JE.
Nelson JD.
J. Am. Chem. Soc.
1999,
121:
12214
For [Ru]:
3k
Morisaki Y.
Kondo T.
Mitsudo T.
Organometallics
1999,
18:
4742
3l
Matsushima Y.
Onitsuka K.
Kondo T.
Mitsudo T.
Takahashi S.
J.
Am. Chem. Soc.
2001,
123:
10405
3m
Matsushima Y.
Onitsuka K.
Takahashi S.
Organometallics
2004,
23:
3763
3n
Kawatsura M.
Ata F.
Hirakawa T.
Hayase S.
Itoh T.
Tetrahedron
Lett.
2008,
49:
4873 ;
and references cited therein
Examples of allylic substitutions
of fluorinated allyl substrates:
4a
Hanzawa Y.
Ishizawa S.
Kobayashi Y.
Chem.
Pharm. Bull.
1988,
36:
4209
4b
Hanzawa Y.
Ishizawa S.
Ito H.
Kobayashi Y.
Taguchi T.
J. Chem. Soc.,
Chem. Commun.
1990,
394
4c
Fish PV.
Reddy SP.
Lee CH.
Johnson WS.
Tetrahedron
Lett.
1992,
33:
8001
4d
Konno T.
Ishihara T.
Yamanaka H.
Tetrahedron
Lett.
2000,
41:
8467
4e
Okano T.
Matsubara H.
Kusukawa T.
Fujita M.
J. Organomet. Chem.
2003,
676:
43
4f
Konno T.
Takehana T.
Ishihara T.
Yamanaka H.
Org. Biomol. Chem.
2004,
2:
93
4g
Konno T.
Takehana T.
Mishima M.
Ishihara T.
J. Org. Chem.
2006,
71:
3545
4h
Kawatsura M.
Wada S.
Hayase S.
Itoh T.
Synlett
2006,
2483
5
Konno T.
Nagata K.
Ishihara T.
Yamanaka H.
J. Org. Chem.
2002,
67:
1768
6
Kawatsura M.
Hirakawa T.
Tanaka T.
Ikeda D.
Hayase S.
Itoh T.
Tetrahedron Lett.
2008,
49:
2450
Examples of net retention mechanism
in the palladium-catalyzed allylic substitutions:
7a
Hayashi T.
Hagihara T.
Konishi M.
Kumada M.
J. Am. Chem. Soc.
1983,
105:
7767
7b
Hayashi T.
Yamamoto A.
Hagihara T.
J.
Org. Chem.
1986,
51:
723
7c
Trost BM.
Toste FD.
J.
Am. Chem. Soc.
1999,
121:
4545
8 We observed the racemization of allylic
amines took place by palladium catalysts. For example, the ee of
(R)-4a decreased
from 88% to 80% by Pd(OAc)2/DPPE
at 60 ˚C for 12 h, and the ee of (S)-3a also decreased from 98% to
13% by [Pd(C3H5)(cod)]BF4/(S)-BINAP at 100 ˚C for 12 h.
9 We also confirmed the reaction with
10 mol% of [Pd(C3H5)(cod)]BF4/BIPHEP [2,2′-bis(diphenyl-phosphino)-1,1′-biphenyl] gave
an α-product with 96% regioselectivity at 60 ˚C,
but the ee decreased to 66%.
10
Typical Procedure
for the [Pd(C
3
H
5
)(cod)]BF
4
/(
S
)-BINAP-Catalyzed Allylic Amination of (
S
)-1 with 2a
To
a solution of [Pd(C3H5)(cod)]BF4 (7.0
mg, 0.021 mmol), (S)-BINAP (12.8 mg,
0.021 mmol), (S)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl
acetate [(S)-1,
50 mg, 0.21 mmol] in dioxane (1.0 mL) was added morpholine
(2a) and stirred at r.t. for 5 min and
40 ˚C for 12 h. The reaction mixture was quenched with
brine and H2O (1 mL), then extracted with EtOAc (3 × 2
mL). The combined organic layers were dried over MgSO4 and
concentrated in vacuo. The NMR yield (95%, trioxane as
an internal standard) and ratio of 3a and 4a was determined by ¹H
NMR of the crude materials.
Analytical
Data of 3a
[α]D
²6 +69.2 [c 1.37, CHCl3; 99% ee
(S)]. The enantiomeric purity
was determined to be 99% ee by HPLC analysis with a Daicel
CHIRALPAK AD-H [hexane-2-PrOH (99:1), flow: 1.0
mL/min, 254 nm, 35 ˚C, t
major = 11.2
min, t
minor = 13.0
min]. ¹H NMR (500 MHz, CDCl3): δ = 2.71-2.80
(m, 4 H), 3.60 (quin, J = 8.2
Hz, 1 H), 3.72 (t, J = 4.6 Hz,
4 H), 6.18 (dd, J = 8.2,
16.0 Hz, 1 H), 6.72 (d, J = 16.0 Hz,
1 H), 7.28-7.42 (m, 5 H). ¹³C
NMR (125 MHz, CDCl3): δ = 50.4, 67.2,
68.6 (q, J
CF = 27.5
Hz), 118.5, 125.7 (q, J
CF = 285.0
Hz), 126.7, 128.5, 128.7, 135.7, 137.5. ¹9F
NMR (470 MHz, CDCl3): δ = 92.0 (d, J = 8.2 Hz).
HRMS (EI):
m/z calcd
for C14H16F3NO: 271.1184; found:
271.1195.
11 The absolute configuration of (S)-3a and (R)-4a were determined
by the comparison of the X-ray crystallographic analysis of the
products from the reaction of (S)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-yl
acetate with 1-phenylpiperazine. See details in the Supporting Information.
Selected examples of kinetic resolution
in the palladium-catalyzed allylic substitutions of disubstituted
symmetrical or monosubstituted allylic esters:
12a
Cook GR.
Curr. Org. Chem.
2000,
4:
869
12b
Robinson DEJE.
Bull SD.
Tetrahedron:
Asymmetry
2003,
14:
1407
12c
Longmire JM.
Wang B.
Zhang X.
Tetrahedron
Lett.
2000,
41:
5435
12d
Reetz MT.
Sostmann S.
J. Organomet.
Chem.
2000,
603:
105
12e
Gilbertson SR.
Lan P.
Org. Lett.
2001,
3:
2237
12f
Cook GR.
Sankaranarayanan S.
Org.
Lett.
2001,
3:
3531
12g
Lüssem BJ.
Gais H.-J.
J.
Org. Chem.
2004,
69:
4041
12h
Castillo AB.
Favier I.
Teuma E.
Castillón S.
Godard C.
Aghmiz A.
Claver C.
Gómez M.
Chem. Commun.
2008,
6197
12i
Hou XL.
Zheng BH.
Org. Lett.
2009,
11:
1789 ; and references cited therein
Examples of kinetic resolution
in the palladium-catalyzed allylic substitutions of 1,3-disubstituted
unsymmetrical allylic esters:
13a
Hayashi T.
Yamamoto A.
Ito Y.
J.
Chem. Soc., Chem. Commun.
1986,
1090
13b
Faller
JW.
Wilt JC.
Tetrahedron
Lett.
2004,
45:
7613
14 Calculated by eeP and eeS. S = ln[(1 - c)(1 + eeP)]/ln[(1 - c) (1 - eeP)]. c = eeS/(eeS + eeP).
15
Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249