Subscribe to RSS
DOI: 10.1055/s-0030-1259296
Organocatalyzed Michael Addition Reaction by Novel (2R,3aS,7aS)-Octa-hydroindole-2-carboxylic Acid, a New Fused Proline
Publication History
Publication Date:
04 January 2011 (online)
Abstract
We present here the results obtained in our study on organocatalytic enantioselective Michael addition reaction of acetone to different nitroolefines using (2R,3aS,7aS)-octahydroindole-2-carboxylic acid [(R,S,S)-Oic] as a new and suitable catalyst for this process. Computational calculations support the results obtained with (R,S,S)-Oic versus its diastereomeric form (S,S,S)-Oic. The final products are obtained in good yields and moderate enantioselectivities (up to 58% ee).
Key words
Michael addition - nitroolefines - ketones - Oic - organocatalysis - enantioselectivity
-
1a
Berkessel A.Gröger H. In Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2004. -
1b
Enantioselective
Organocatalysis
Dalko PI. Wiley-VCH; Weinheim: 2007. -
1c
Organocatalysis
Reetz MT.List B.Jaroch S.Weinmann H. Springer; Berlin: Heidelberg: 2008. - For reviews on asymmetric Michael addition reactions, see:
-
2a
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033 -
2b
Krause N.Hoffmann-Röder A. Synthesis 2001, 171 -
2c
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 -
2d
Christoffers A.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688 -
2e
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279 -
2f
Enders D.Saint-Dizier A.Lannou MI.Lenzen A. Eur. J. Org. Chem. 2006, 29 -
2g
Enders D.Luttgen K.Narine AA. Synthesis 2007, 959 - For reviews on 1,4-addition reactions catalyzed by organocatalysts, see:
-
3a
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
3b
Almaşi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 -
3c
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065 -
3d
Sulzer-Mossé S.Alexakis A. Chem. Commun. 2007, 3123 -
3e
Enders D.Wang C.Liebich JX. Chem. Eur. J. 2009, 15: 11058 - 4 For a recent review concerning the
organocatalytic addition of ketones to nitroalkenes, see:
Roca-López D.Sádaba D.Delso I.Herrera RP.Tejero T.Merino P. Tetrahedron: Asymmetry 2010, 21: 2561 -
5a
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001. -
5b
Ballini R.Petrini M. Tetrahedron 2004, 60: 1017 - For pioneering examples, see:
-
6a
List B.Pojarliev PH.Martin HJ. Org. Lett. 2001, 3: 2423 -
6b
Betancort JM.Barbas CF. Org. Lett. 2001, 3: 3737 -
6c
Enders D.Seki A. Synlett 2002, 26 - For selected examples, see:
-
7a
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170 -
7b
Yalalov DA.Tsogoeva SB.Schmatz S. Adv. Synth. Catal. 2006, 348: 826 -
7c
Gun Q.Guo X.-T.Wu X.-Y. Tetrahedron 2009, 65: 5265 -
7d
Peng L.Xu X.-Y.Wang L.-L.Huang J.Bai J.-F.Huang Q.-C.Wang L.-X. Eur. J. Org. Chem. 2010, 2978 - 8
Sayago FJ.Jiménez AI.Cativiela C. Tetrahedron: Asymmetry 2007, 18: 2358 - 9
Sayago FJ.Calaza MI.Jiménez AI.Cativiela C. Tetrahedron 2008, 64: 84 - For selected examples, see:
-
10a
Hurst M.Jarvis B. Drugs 2001, 61: 867 -
10b
Reissmann S.Imhof D. Curr. Med. Chem. 2004, 11: 2823 -
10c
Gass J.Khosla C. Cell. Mol. Life Sci. 2007, 64: 345 - For selected examples, see:
-
11a
Bellemère G.Vaudry H.Morain P.Jégou S. J. Neuroendocrinol. 2005, 17: 306 -
11b
Curran MP.McCormack PL.Simpson D. Drugs 2006, 66: 235 -
11c
Bas M.Bier H.Greve J.Kojda G.Hoffmann TK. Allergy 2006, 61: 1490 -
11d
Sorbera LA.Fernández-Forner D.Bayes M. Drug Future 2006, 31: 101 - For reviews on enamine catalysis, see:
-
12a
List B. Synlett 2001, 1675 -
12b
List B. Tetrahedron 2002, 58: 5573 -
12c
List B. Chem. Commun. 2006, 819 -
12d
Marigo M.Jørgensen KA. Chem. Commun. 2006, 2001 -
12e
Mukherjee S.Yang J.-W.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
12f
Pihko PM.Majander I.Erkilä A. Top. Curr. Chem. 2010, 291: 29 - 13 During the development of our project,
a novel application of structure 4 analogue
as organocatalyst has been reported:
Luo R.-S.Weng J.Ai H.-B.Lu G.Chan ASC. Adv. Synth. Catal. 2009, 351: 2449 - 14 For the single reported example
of 4 as suitable organocatalyst, see:
Tang X.Liégault B.Renaud J.-L.Bruneau C. Tetrahedron: Asymmetry 2006, 17: 2187 - 16 For the single reported example
of 2 as suitable organocatalyst, see:
Vignola N.List B. J. Am. Chem. Soc. 2004, 126: 450 - 17
Flores-Ortega A.Jiménez AI.Cativiela C.Nussinov R.Alemán C.Casanovas J. J. Org. Chem. 2008, 73: 3418 - For scarce reported examples of 3 as suitable organocatalyst, see:
-
18a
Kunz RK.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 3240 -
18b
Hartikka A.Arvidsson PI. J. Org. Chem. 2007, 72: 5874 -
19a
Mitchell CET.Cobb AJA.Ley SV. Synlett 2005, 611 -
19b
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170 -
19c
Laars M.Ausmess K.Uudesmaa M.Tamm T.Kanger T.Lopp M. J. Org. Chem. 2009, 74: 3772 -
19d
Tan B.Zeng X.Lu Y.Chua PJ.Zhong G. Org. Lett. 2009, 11: 1927 -
20a
Wang J.Li H.Lou B.Zu L.Guo H.Wang W. Chem. Eur. J. 2006, 12: 4321 -
20b
Arno M.Zaragoza RJ.Domingo LR. Tetrahedron: Asymmetry 2007, 18: 157 -
20c
Okuyama Y.Nakano H.Watanabe Y.Makabe M.Takeshita M.Uwai K.Kabuto C.Kwon E. Tetrahedron Lett. 2009, 50: 193 - 21
Wiesner M.Upert G.Angelici G.Wennemers H. J. Am. Chem. Soc. 2010, 132: 6 - 22
Xue F.Zhang S.Duan W.Wang W. Adv. Synth. Catal. 2008, 250: 2194 - 23
Evans DA.Seidel D. J. Am. Chem. Soc. 2005, 127: 9958 - 24 All calculations were carried
out with the Gaussian 09 suite of programs:
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Scalmani G.Barone V.Mennucci B.Petersson GA.Nakatsuji H.Caricato M.Li X.Hratchian HP.Izmaylov AF.Bloino J.Zheng G.Sonnenberg JL.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Vreven T.Montgomery JA.Peralta JE.Ogliaro F.Bearpark M.Heyd JJ.Brothers E.Kudin KN.Staroverov VN.Kobayashi R.Normand J.Raghavachari K.Rendell A.Burant JC.Iyengar SS.Tomasi J.Cossi M.Rega N.Millam NJ.Klene M.Knox JE.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Martin RL.Morokuma K.Zakrzewski VG.Voth GA.Salvador P.Dannenberg JJ.Dapprich S.Daniels AD.Farkas .Foresman JB.Ortiz JV.Cioslowski J.Fox DJ. Gaussian 09, Revision A.1 Gaussian, Inc.; Wallingford CT: 2009. - Calculations were carried out by fully optimizing transition structures at the B3LYP/6-31+G(d,p) level and then performing single-point calculations at M062X/6-311+G(d,p) level with correction for solvent using Tomasi’s polarizable continuum model (PCM) for DMSO level. The use of M062X functional was chosen following recent studies carried out by Houk and Papai. See:
-
26a
Rokob TA.Hamza A.Papai I. Org. Lett. 2007, 9: 4279 -
26b
Wheeler SE.Moran A.Pieniazek SZ.Houk KN. J. Phys. Chem. 2009, 113: 10376
References and Notes
Typical Experimental
Procedure
To a suspension of catalyst (10 mol%)
and nitroalkene (0.5 mmol) in DMF (4 mL), acetone (13.5 mmol, 1
mL) was added, and the resulting mixture was stirred at 25 ˚C
for the time indicated in Table
[³]
.
After that time the reaction was quenched with sat. NH4Cl
(2 × 20 mL), the layers were separated
and the aqueous layer extracted with EtOAc (3 × 25
mL). The combined organic layers were washed with brine (2 × 20
mL), dried (MgSO4), filtered, and rotatory evaporated
to give a residue which was purified by flash chromatography using
hexane-EtOAc (7:3) as an eluent.
Selected
Spectral Data
Compound 8j:
Following the general procedure, compound 8j was
obtained after 10 d at r.t. as a white solid in 68% yield; mp
135-136 ˚C. ¹H NMR (400 MHz,
CD3OD): δ = 2.05
(s, 3 H), 2.88 (dd, J = 2.6,
7.2 Hz, 2 H), 3.82-3.89 (m, 1 H), 4.57 (dd, J = 9.2, 12.4
Hz, 1 H), 4.70 (dd, J = 6.3,
12.4 Hz, 1 H), 6.70-6.74 (m, 2 H), 7.06-7.10 (m,
2 H). ¹³C NMR (100 MHz, CD3OD): δ = 30.4,
40.0, 47.2, 80.9, 116.5, 129.8, 131.5, 157.9, 208.8. The ee of the
product was determined by HPLC using a Daicel Chiralpak IA column
(n-hexane-i-PrOH = 90:10,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.9
min. HRMS: m/z calcd for C11H13NNaO4:
246.0737; found: 246.0728 [M+ + Na]. [α]D
²² 7.3
(c 1.0, MeOH, 33% ee).
Compound 8k: Following the general procedure, compound 8k was obtained after 10 d at r.t. as a
yellow oil in 74% yield; mp 131-133 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.11
(s, 3 H), 2.88 (d, J = 7.1
Hz, 2 H), 3.96 (q, J = 7.1
Hz, 1 H), 4.55 (dd, J = 7.8,
12.2 Hz, 1 H), 4.65 (dd, J = 6.8,
12.2 Hz, 1 H), 5.02 (s, 1 H), 6.91-6.95 (m, 2 H), 7.12-7.15
(m, 2 H), 7.31-7.44 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3): δ = 30.3,
38.3, 46.2, 70.0, 79.6, 115.2, 127.4, 128.0, 128.4, 128.5, 130.9, 136.7,
158.3, 205.5. The ee of the product was determined by HPLC using
a Daicel Chiralpak IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 44.5
min; t
R(minor) = 41.1
min. HRMS: m/z calcd for C18H19NNaO4:
336.1206; found: 336.1215 [M+ + Na].
Compound 8l: Following the general procedure, compound 8l was obtained after 2 d at r.t. as a
yellow oil in 67% yield. ¹H NMR (300
MHz, CDCl3): δ = 2.13
(s, 3 H), 2.88 (d, J = 6.9
Hz, 2 H), 3.97 (q, J = 6.9
Hz, 1 H), 4.56 (dd, J = 8.1, 12.6
Hz, 1 H), 4.67 (dd, J = 6.3,
12.6 Hz, 1 H), 7.07 (dd, J = 2.1,
8.4 Hz, 1 H), 7.32 (d, J = 2.1
Hz, 1 H), 7.39 (d, J = 8.4
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 30.2,
38.0, 45.7, 78.8, 126.9, 129.4, 130.9, 132.0, 133.0, 139.1, 204.6. The
ee of the product was determined by HPLC using a Daicel Chiralpak
IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.1
min. HRMS: m/z calcd for C11H11Cl2NNaO3:
298.0008; found: 298.0007 [M+ + Na]. [α]D
²² -1.53
(c 1.0, CHCl3, 44% ee).
See ref. 25b. Whereas the mean error is estimated of about 2.0 kcal/mol for M062X functional, for B3LYP deviations up to more than 10 kcal/mol could be observed. For this reason, although B3LYP correctly predict the observed enantioselectivity for 4, it cannot be considered representative.