RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259516
Transition-Metal-Free, Chemoselective Aerobic Oxidations of Sulfides and Alcohols with Potassium Nitrate and Pyridinium Tribromide or Bromine
Publikationsverlauf
Publikationsdatum:
27. Januar 2011 (online)
Abstract
An efficient oxidation of sulfides with air catalyzed by the combination of potassium nitrate with pyridinium tribromide under transition-metal-free conditions was reported. By replacing pyridinium tribromide with bromine, the reaction system was also useful in the oxidation of alcohols. All reactions afforded the corresponding products in good to excellent yields with high chemoselectivities.
Key words
aerobic oxidation - sulfide - alcohol - chemoselectivity - transition-metal-free
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Drabowicz J.Kielbasinski P.Mikolajczyk M. In The Chemistry of Sulfones and SulfoxidesPatai S.Rappoport Z.Stirling C. Wiley; Chichester: 1988. p.233-278 -
1b
Sulfur
Reagents in Organic Synthesis
Metzner P.Thuillier A. Academic Press; London: 1994. -
1c
Hudlicky M. Oxidations in Organic Chemistry American Chemical Society; Washington DC: 1990. -
1d
Fernandez M.Tojo G. In Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common PracticeTojo G. Springer; New York: 2006. -
2a
Shi Z.-Z.Zhang C.Li S.Pan D.-L.Ding S.-T.Cui Y.-X.Jiao N. Angew. Chem. Int. Ed. 2009, 48: 4572 -
2b
Zhang C.Jiao N. J. Am. Chem. Soc. 2010, 132: 28 -
2c
He X.-J.Shen Z.-L.Mo W.-M.Sun N.Hu B.-X.Hu X.-Q. Adv. Synth. Catal. 2009, 351: 89 -
2d
Miao C.-X.He L.-N.Wang J.-L.Wu F. J. Org. Chem. 2010, 75: 257 -
3a
Legros J.Bolm C. Angew. Chem. Int. Ed. 2003, 42: 5487 -
3b
Hosseinpoor F.Golchoubian H. Tetrahedron Lett. 2006, 47: 5195 -
3c
Liu R.Wu L.-Z.Feng X.-M.Zhang Z.Li Y.-Z.Wang Z.-L. Inorg. Chim. Acta 2007, 360: 656 -
3d
Rosa MD.Lamberti M.Pellecchia C.Scettri A.Villano R.Soriente A. Tetrahedron Lett. 2006, 47: 7233 -
3e
Bolm C.Bienewald F. Angew. Chem., Int. Ed. Engl. 1995, 34: 2883 -
3f
Karimi B.Nezhad MG.Clark JH. Org. Lett. 2005, 7: 625 -
3g
Scarso A.Strukul G. Adv. Synth. Catal. 2005, 347: 1227 -
3h
Yuan Y.Bian Y.-B. Tetrahedron Lett. 2007, 48: 8518 -
3i
Shi F.Tse MK.Kaiserand HM.Beller M. Adv. Synth. Catal. 2007, 349: 2425 -
3j
Wang X.-S.Wang X.-W.Guo H.-C.Wang Z.Ding K.-L. Chem. Eur. J. 2005, 11: 4078 -
4a
Martin SE.Garrone A. Tetrahedron Lett. 2003, 44: 549 -
4b
Shulpin GB.Suss-Fink G.Shulpina LS.
J. Mol. Catal. A: Chem. 2001, 170: 17 -
4c
Liu J.-H.Wang F.Sun K.-P.Xu X.-L. Adv. Synth. Catal. 2007, 349: 2439 -
4d
Kantam ML.Yadav J.Laha S.Sreedhar B.Bhargava S. Adv. Synth. Catal. 2008, 350: 2575 -
4e
Roy MN.Poupon JC.Charette AB. J. Org. Chem. 2009, 74: 8510 -
5a
Martin SE.Rossi LI. Tetrahedron Lett. 2001, 42: 7147 -
5b
Boring E.Geletii YV.Hill CL. J. Am. Chem. Soc. 2001, 123: 1625 -
5c
Komatsu N.Uda M.Suzuki H. Chem. Lett. 1997, 1229 -
5d
Riley DP.Shumate RE.
J. Am. Chem. Soc. 1984, 106: 3179 -
5e
Iwahama T.Sakaguchi S.Ishii Y. Tetrahedron Lett. 1998, 39: 9059 -
5f
Semmelhack MF.Schmid CR.Cortés DA.Chou CS. J. Am. Chem. Soc. 1984, 106: 3374 -
5g
Kaneda K.Fujie Y.Ebitani K. Tetrahedron Lett. 1997, 38: 9023 -
5h
Iwahama T.Yosino Y.Keitoku T.Sakaguchi S.Ishii Y. J. Org. Chem. 2000, 65: 6502 -
5i
Jia C.-G.Jing F.-Y.Hu W.-D.Huang M.-Y.Jiang Y.-Y. J. Mol. Catal. 1994, 91: 139 -
5j
Chan W.-L.Sung H.-J.Koo S.-Y.Han M.-J.Chi K.-W. Tetrahedron Lett. 2009, 50: 559 -
5k
Minisci F.Punta C.Recupero F.Fontana F.Pedulli GF. Chem. Commun. 2002, 688 -
5l
Martin SE.Suarez DF. Tetrahedron Lett. 2002, 43: 4475 -
5m
Kinen CO.Rossi LI.de Rossi RH. J. Org. Chem. 2009, 74: 7132 -
6a
Zhang H.Chen C.-Y.Liu R.-H.Xu Q.Zhao W.-Q. Molecules 2010, 15: 83 -
6b
Zhang H.Chen C.-Y.Liu R.-H.Xu Q.Liu J.-H. Synth. Commun. 2008, 38: 4445 -
6c
Xie Y.Mo W.-M.Xu D.Shen Z.-L.Sun N.Hu B.-X.Hu X.-Q. J. Org. Chem. 2007, 72: 4288 -
6d
Liu R.-H.Dong C.-Y.Liang X.-M.Wang X.-J.Hu X.-Q. J. Org. Chem. 2005, 70: 729 -
6e
Liu R.-H.Liang X.-M.Dong C.-Y.Hu X.-Q. J. Am. Chem. Soc. 2004, 126: 4112 -
6f
Yang G.-Y.Wang W.Zhu W.-M.An C.-B.Gao X.-Q.Song M.-P. Synlett 2010, 437 - 7
Djerassi C.Scholz CR. J. Am. Chem. Soc. 1948, 70: 417 - 8
Doxsee KM.Hutchison JE. In Green Organic Chemistry Thompson Brooks/Cole; Pacific Grove CA: 2004. p.120-124 - 9
Suarez AR.Baruzzi AM.Rossi LI. J. Org. Chem. 1998, 63: 5689 -
10a
Bosch E.Kochi JK. J. Org. Chem. 1996, 60: 3172 -
10b
Roy S.Baiker A. Chem. Rev. 2009, 109: 4054 - 11
Silverstein RM.Webster FX.Kiemle DJ. In Spectrometric Identification of Organic Compounds John Wiley and Sons, Inc.; New York: 2005. - 12
Thiemann M.Scheibler E.Wiegand KW. Nitric Acid, Nitrous Acid, and Nitrogen Oxides, In Ullmann’s Encyclopedia of Industrial Chemistry Wiley-VCH; Weinheim: 2005.
References and Notes
General Methods
¹H
NMR and ¹³C NMR spectra were obtained
with a Bruker AVANCE 600 spectrometer in CDCl3 with TMS
as an internal standard. Infrared spectra were recorded with a Bruker
Tensor 27 FT-IR spectrometer using KBr pellets. GC-MS was performed
on a FINNIGAN Trace DSQ chromatograph.
Procedure
for Oxidation of Sulfide Using KNO
3
-PyHBr
3
/Br
2
as Catalyst
A typical experiment
was carried out in an open reaction tube. Sulfide (1 mmol) was added
to the mixture of KNO3 (0.1 mmol) and PyHBr3 (or
bromine; 0.15 mmol) in MeCN (2 mL). The reaction mixture was stirred
under aerial conditions at r.t. The reaction progress was detected
by
GC and TLC. After the starting material had disappeared, Na2S2O3 aq
solution was used to quench the reaction. CH2Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2Cl2.
The combined organic layers were washed with H2O and
dried over MgSO4. The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative
Spectral Data of Sulfoxide - Methyl Phenyl Sulfoxide
IR
(KBr): νmax = 3265, 1477, 1038, 749,
692 cm-¹. ¹H NMR (600
MHz, CDCl3): δ = 2.73
(s, 3 H), 7.48-7.54 (m, 3 H), 7.64-7.65 (d, 2
H, J = 7.44
Hz). ¹³C NMR (150 MHz, CDCl3): δ = 44.13,
123.6, 129.5, 131.2, 145.7. MS (EI, 70 eV): m/z (%) = 140 [M+].³h
Procedure for Oxidation of Benzaldehydes
and Acetophenones Using KNO
3
-Br
2
/PyHBr
3
as Catalyst
A typical experiment
was carried out in an open reaction tube. Benzaldehyde or acetophenone
(1 mmol) was added to the mixture of KNO3 (0.2 mmol)
and bromine (0.3 mmol) in MeCN (2 mL). The reaction mixture was
stirred under aerial conditions at 50 ˚C. The reaction
progress was detected by GC and TLC. After the starting material
had disappeared, Na2S2O3 aq solution
was used to quench the reaction. CH2Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2Cl2.
The combined organic layers were washed with H2O and
dried over MgSO4. The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative Spectral Data of Aldehyde - Benzaldehyde
IR
(KBr): νmax = 3064, 2819, 1701, 1311,
1203, 746 cm-¹.
¹H
NMR (600 MHz, CDCl3): δ = 7.51-7.54
(t, 2 H, J = 7.54 Hz),
7.61-7.64 (t, 1 H, J = 7.43
Hz), 7.87-7.88 (d, 2 H, J = 7.69
Hz), 10.00 (s, 1 H). ¹³C NMR (150 MHz,
CDCl3): δ = 129.0,
129.7, 134.4, 136.4, 192.4. MS (EI, 70 eV): m/z (%) = 106 [M+].²c