Abstract
An efficient oxidation of sulfides with air catalyzed by the
combination of potassium nitrate with pyridinium tribromide under
transition-metal-free conditions was reported. By replacing pyridinium
tribromide with bromine, the reaction system was also useful in
the oxidation of alcohols. All reactions afforded the corresponding
products in good to excellent yields with high chemoselectivities.
Key words
aerobic oxidation - sulfide - alcohol - chemoselectivity - transition-metal-free
References and Notes
1a
Drabowicz J.
Kielbasinski P.
Mikolajczyk M. In The Chemistry
of Sulfones and Sulfoxides
Patai S.
Rappoport Z.
Stirling C.
Wiley;
Chichester:
1988.
p.233-278
1b
Sulfur
Reagents in Organic Synthesis
Metzner P.
Thuillier A.
Academic Press;
London:
1994.
1c
Hudlicky M.
Oxidations in Organic Chemistry
American
Chemical Society;
Washington DC:
1990.
1d
Fernandez M.
Tojo G. In Oxidation
of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice
Tojo G.
Springer;
New
York:
2006.
2a
Shi Z.-Z.
Zhang C.
Li S.
Pan D.-L.
Ding S.-T.
Cui Y.-X.
Jiao N.
Angew.
Chem. Int. Ed.
2009,
48:
4572
2b
Zhang C.
Jiao N.
J. Am. Chem. Soc.
2010,
132:
28
2c
He X.-J.
Shen Z.-L.
Mo W.-M.
Sun N.
Hu B.-X.
Hu X.-Q.
Adv. Synth. Catal.
2009,
351:
89
2d
Miao
C.-X.
He L.-N.
Wang J.-L.
Wu F.
J. Org. Chem.
2010,
75:
257
3a
Legros J.
Bolm C.
Angew.
Chem. Int. Ed.
2003,
42:
5487
3b
Hosseinpoor F.
Golchoubian H.
Tetrahedron Lett.
2006,
47:
5195
3c
Liu R.
Wu L.-Z.
Feng X.-M.
Zhang Z.
Li Y.-Z.
Wang Z.-L.
Inorg. Chim. Acta
2007,
360:
656
3d
Rosa MD.
Lamberti M.
Pellecchia C.
Scettri A.
Villano R.
Soriente A.
Tetrahedron
Lett.
2006,
47:
7233
3e
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2883
3f
Karimi B.
Nezhad MG.
Clark JH.
Org. Lett.
2005,
7:
625
3g
Scarso A.
Strukul G.
Adv. Synth. Catal.
2005,
347:
1227
3h
Yuan Y.
Bian Y.-B.
Tetrahedron Lett.
2007,
48:
8518
3i
Shi F.
Tse
MK.
Kaiserand HM.
Beller M.
Adv.
Synth. Catal.
2007,
349:
2425
3j
Wang X.-S.
Wang X.-W.
Guo H.-C.
Wang Z.
Ding K.-L.
Chem.
Eur. J.
2005,
11:
4078
4a
Martin SE.
Garrone A.
Tetrahedron
Lett.
2003,
44:
549
4b
Shulpin GB.
Suss-Fink G.
Shulpina LS.
J. Mol. Catal. A: Chem.
2001,
170:
17
4c
Liu J.-H.
Wang F.
Sun K.-P.
Xu X.-L.
Adv. Synth. Catal.
2007,
349:
2439
4d
Kantam ML.
Yadav J.
Laha S.
Sreedhar B.
Bhargava S.
Adv.
Synth. Catal.
2008,
350:
2575
4e
Roy MN.
Poupon JC.
Charette AB.
J. Org. Chem.
2009,
74:
8510
5a
Martin SE.
Rossi LI.
Tetrahedron Lett.
2001,
42:
7147
5b
Boring E.
Geletii YV.
Hill CL.
J. Am. Chem. Soc.
2001,
123:
1625
5c
Komatsu N.
Uda M.
Suzuki H.
Chem.
Lett.
1997,
1229
5d
Riley DP.
Shumate RE.
J.
Am. Chem. Soc.
1984,
106:
3179
5e
Iwahama T.
Sakaguchi S.
Ishii Y.
Tetrahedron
Lett.
1998,
39:
9059
5f
Semmelhack MF.
Schmid CR.
Cortés DA.
Chou CS.
J.
Am. Chem. Soc.
1984,
106:
3374
5g
Kaneda K.
Fujie Y.
Ebitani K.
Tetrahedron
Lett.
1997,
38:
9023
5h
Iwahama T.
Yosino Y.
Keitoku T.
Sakaguchi S.
Ishii Y.
J.
Org. Chem.
2000,
65:
6502
5i
Jia C.-G.
Jing F.-Y.
Hu W.-D.
Huang M.-Y.
Jiang Y.-Y.
J.
Mol. Catal.
1994,
91:
139
5j
Chan W.-L.
Sung H.-J.
Koo S.-Y.
Han M.-J.
Chi K.-W.
Tetrahedron
Lett.
2009,
50:
559
5k
Minisci F.
Punta C.
Recupero F.
Fontana F.
Pedulli GF.
Chem.
Commun.
2002,
688
5l
Martin SE.
Suarez DF.
Tetrahedron
Lett.
2002,
43:
4475
5m
Kinen CO.
Rossi LI.
de Rossi RH.
J. Org. Chem.
2009,
74:
7132
6a
Zhang H.
Chen C.-Y.
Liu R.-H.
Xu Q.
Zhao W.-Q.
Molecules
2010,
15:
83
6b
Zhang H.
Chen C.-Y.
Liu
R.-H.
Xu Q.
Liu J.-H.
Synth.
Commun.
2008,
38:
4445
6c
Xie Y.
Mo W.-M.
Xu D.
Shen Z.-L.
Sun N.
Hu
B.-X.
Hu X.-Q.
J. Org. Chem.
2007,
72:
4288
6d
Liu
R.-H.
Dong C.-Y.
Liang X.-M.
Wang X.-J.
Hu X.-Q.
J.
Org. Chem.
2005,
70:
729
6e
Liu R.-H.
Liang X.-M.
Dong C.-Y.
Hu X.-Q.
J. Am. Chem. Soc.
2004,
126:
4112
6f
Yang G.-Y.
Wang W.
Zhu W.-M.
An C.-B.
Gao
X.-Q.
Song M.-P.
Synlett
2010,
437
7
Djerassi C.
Scholz CR.
J. Am. Chem. Soc.
1948,
70:
417
8
Doxsee KM.
Hutchison JE. In Green Organic Chemistry
Thompson
Brooks/Cole;
Pacific Grove CA:
2004.
p.120-124
9
Suarez AR.
Baruzzi AM.
Rossi LI.
J. Org. Chem.
1998,
63:
5689
10a
Bosch E.
Kochi JK.
J.
Org. Chem.
1996,
60:
3172
10b
Roy S.
Baiker A.
Chem. Rev.
2009,
109:
4054
11
Silverstein RM.
Webster FX.
Kiemle DJ. In Spectrometric
Identification of Organic Compounds
John Wiley
and Sons, Inc.;
New York:
2005.
12
Thiemann M.
Scheibler E.
Wiegand KW.
Nitric Acid, Nitrous Acid, and Nitrogen Oxides , In Ullmann’s Encyclopedia of Industrial
Chemistry
Wiley-VCH;
Weinheim:
2005.
13
General Methods
¹ H
NMR and ¹³ C NMR spectra were obtained
with a Bruker AVANCE 600 spectrometer in CDCl3 with TMS
as an internal standard. Infrared spectra were recorded with a Bruker
Tensor 27 FT-IR spectrometer using KBr pellets. GC-MS was performed
on a FINNIGAN Trace DSQ chromatograph.
Procedure
for Oxidation of Sulfide Using KNO
3
-PyHBr
3
/Br
2
as Catalyst
A typical experiment
was carried out in an open reaction tube. Sulfide (1 mmol) was added
to the mixture of KNO3 (0.1 mmol) and PyHBr3 (or
bromine; 0.15 mmol) in MeCN (2 mL). The reaction mixture was stirred
under aerial conditions at r.t. The reaction progress was detected
by GC and TLC. After the starting material had disappeared, Na2 S2 O3 aq
solution was used to quench the reaction. CH2 Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2 Cl2 .
The combined organic layers were washed with H2 O and
dried over MgSO4 . The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative
Spectral Data of Sulfoxide - Methyl Phenyl Sulfoxide
IR
(KBr): νmax = 3265, 1477, 1038, 749,
692 cm-¹ . ¹ H NMR (600
MHz, CDCl3 ): δ = 2.73
(s, 3 H), 7.48-7.54 (m, 3 H), 7.64-7.65 (d, 2
H, J = 7.44
Hz). ¹³ C NMR (150 MHz, CDCl3 ): δ = 44.13,
123.6, 129.5, 131.2, 145.7. MS (EI, 70 eV): m/z (%) = 140 [M+ ].³h
Procedure for Oxidation of Benzaldehydes
and Acetophenones Using KNO
3
-Br
2
/PyHBr
3
as Catalyst
A typical experiment
was carried out in an open reaction tube. Benzaldehyde or acetophenone
(1 mmol) was added to the mixture of KNO3 (0.2 mmol)
and bromine (0.3 mmol) in MeCN (2 mL). The reaction mixture was
stirred under aerial conditions at 50 ˚C. The reaction
progress was detected by GC and TLC. After the starting material
had disappeared, Na2 S2 O3 aq solution
was used to quench the reaction. CH2 Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2 Cl2 .
The combined organic layers were washed with H2 O and
dried over MgSO4 . The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative Spectral Data of Aldehyde - Benzaldehyde
IR
(KBr): νmax = 3064, 2819, 1701, 1311,
1203, 746 cm-¹ .
¹ H
NMR (600 MHz, CDCl3 ): δ = 7.51-7.54
(t, 2 H, J = 7.54 Hz),
7.61-7.64 (t, 1 H, J = 7.43
Hz), 7.87-7.88 (d, 2 H, J = 7.69
Hz), 10.00 (s, 1 H). ¹³ C NMR (150 MHz,
CDCl3 ): δ = 129.0,
129.7, 134.4, 136.4, 192.4. MS (EI, 70 eV): m/z (%) = 106 [M+ ].²c