Abstract
An efficient oxidation of sulfides with air catalyzed by the
combination of potassium nitrate with pyridinium tribromide under
transition-metal-free conditions was reported. By replacing pyridinium
tribromide with bromine, the reaction system was also useful in
the oxidation of alcohols. All reactions afforded the corresponding
products in good to excellent yields with high chemoselectivities.
Key words
aerobic oxidation - sulfide - alcohol - chemoselectivity - transition-metal-free
References and Notes
<A NAME="RW17710ST-1A">1a </A>
Drabowicz J.
Kielbasinski P.
Mikolajczyk M. In The Chemistry
of Sulfones and Sulfoxides
Patai S.
Rappoport Z.
Stirling C.
Wiley;
Chichester:
1988.
p.233-278
<A NAME="RW17710ST-1B">1b </A>
Sulfur
Reagents in Organic Synthesis
Metzner P.
Thuillier A.
Academic Press;
London:
1994.
<A NAME="RW17710ST-1C">1c </A>
Hudlicky M.
Oxidations in Organic Chemistry
American
Chemical Society;
Washington DC:
1990.
<A NAME="RW17710ST-1D">1d </A>
Fernandez M.
Tojo G. In Oxidation
of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice
Tojo G.
Springer;
New
York:
2006.
<A NAME="RW17710ST-2A">2a </A>
Shi Z.-Z.
Zhang C.
Li S.
Pan D.-L.
Ding S.-T.
Cui Y.-X.
Jiao N.
Angew.
Chem. Int. Ed.
2009,
48:
4572
<A NAME="RW17710ST-2B">2b </A>
Zhang C.
Jiao N.
J. Am. Chem. Soc.
2010,
132:
28
<A NAME="RW17710ST-2C">2c </A>
He X.-J.
Shen Z.-L.
Mo W.-M.
Sun N.
Hu B.-X.
Hu X.-Q.
Adv. Synth. Catal.
2009,
351:
89
<A NAME="RW17710ST-2D">2d </A>
Miao
C.-X.
He L.-N.
Wang J.-L.
Wu F.
J. Org. Chem.
2010,
75:
257
<A NAME="RW17710ST-3A">3a </A>
Legros J.
Bolm C.
Angew.
Chem. Int. Ed.
2003,
42:
5487
<A NAME="RW17710ST-3B">3b </A>
Hosseinpoor F.
Golchoubian H.
Tetrahedron Lett.
2006,
47:
5195
<A NAME="RW17710ST-3C">3c </A>
Liu R.
Wu L.-Z.
Feng X.-M.
Zhang Z.
Li Y.-Z.
Wang Z.-L.
Inorg. Chim. Acta
2007,
360:
656
<A NAME="RW17710ST-3D">3d </A>
Rosa MD.
Lamberti M.
Pellecchia C.
Scettri A.
Villano R.
Soriente A.
Tetrahedron
Lett.
2006,
47:
7233
<A NAME="RW17710ST-3E">3e </A>
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2883
<A NAME="RW17710ST-3F">3f </A>
Karimi B.
Nezhad MG.
Clark JH.
Org. Lett.
2005,
7:
625
<A NAME="RW17710ST-3G">3g </A>
Scarso A.
Strukul G.
Adv. Synth. Catal.
2005,
347:
1227
<A NAME="RW17710ST-3H">3h </A>
Yuan Y.
Bian Y.-B.
Tetrahedron Lett.
2007,
48:
8518
<A NAME="RW17710ST-3I">3i </A>
Shi F.
Tse
MK.
Kaiserand HM.
Beller M.
Adv.
Synth. Catal.
2007,
349:
2425
<A NAME="RW17710ST-3J">3j </A>
Wang X.-S.
Wang X.-W.
Guo H.-C.
Wang Z.
Ding K.-L.
Chem.
Eur. J.
2005,
11:
4078
<A NAME="RW17710ST-4A">4a </A>
Martin SE.
Garrone A.
Tetrahedron
Lett.
2003,
44:
549
<A NAME="RW17710ST-4B">4b </A>
Shulpin GB.
Suss-Fink G.
Shulpina LS.
J. Mol. Catal. A: Chem.
2001,
170:
17
<A NAME="RW17710ST-4C">4c </A>
Liu J.-H.
Wang F.
Sun K.-P.
Xu X.-L.
Adv. Synth. Catal.
2007,
349:
2439
<A NAME="RW17710ST-4D">4d </A>
Kantam ML.
Yadav J.
Laha S.
Sreedhar B.
Bhargava S.
Adv.
Synth. Catal.
2008,
350:
2575
<A NAME="RW17710ST-4E">4e </A>
Roy MN.
Poupon JC.
Charette AB.
J. Org. Chem.
2009,
74:
8510
<A NAME="RW17710ST-5A">5a </A>
Martin SE.
Rossi LI.
Tetrahedron Lett.
2001,
42:
7147
<A NAME="RW17710ST-5B">5b </A>
Boring E.
Geletii YV.
Hill CL.
J. Am. Chem. Soc.
2001,
123:
1625
<A NAME="RW17710ST-5C">5c </A>
Komatsu N.
Uda M.
Suzuki H.
Chem.
Lett.
1997,
1229
<A NAME="RW17710ST-5D">5d </A>
Riley DP.
Shumate RE.
J.
Am. Chem. Soc.
1984,
106:
3179
<A NAME="RW17710ST-5E">5e </A>
Iwahama T.
Sakaguchi S.
Ishii Y.
Tetrahedron
Lett.
1998,
39:
9059
<A NAME="RW17710ST-5F">5f </A>
Semmelhack MF.
Schmid CR.
Cortés DA.
Chou CS.
J.
Am. Chem. Soc.
1984,
106:
3374
<A NAME="RW17710ST-5G">5g </A>
Kaneda K.
Fujie Y.
Ebitani K.
Tetrahedron
Lett.
1997,
38:
9023
<A NAME="RW17710ST-5H">5h </A>
Iwahama T.
Yosino Y.
Keitoku T.
Sakaguchi S.
Ishii Y.
J.
Org. Chem.
2000,
65:
6502
<A NAME="RW17710ST-5I">5i </A>
Jia C.-G.
Jing F.-Y.
Hu W.-D.
Huang M.-Y.
Jiang Y.-Y.
J.
Mol. Catal.
1994,
91:
139
<A NAME="RW17710ST-5J">5j </A>
Chan W.-L.
Sung H.-J.
Koo S.-Y.
Han M.-J.
Chi K.-W.
Tetrahedron
Lett.
2009,
50:
559
<A NAME="RW17710ST-5K">5k </A>
Minisci F.
Punta C.
Recupero F.
Fontana F.
Pedulli GF.
Chem.
Commun.
2002,
688
<A NAME="RW17710ST-5L">5l </A>
Martin SE.
Suarez DF.
Tetrahedron
Lett.
2002,
43:
4475
<A NAME="RW17710ST-5M">5m </A>
Kinen CO.
Rossi LI.
de Rossi RH.
J. Org. Chem.
2009,
74:
7132
<A NAME="RW17710ST-6A">6a </A>
Zhang H.
Chen C.-Y.
Liu R.-H.
Xu Q.
Zhao W.-Q.
Molecules
2010,
15:
83
<A NAME="RW17710ST-6B">6b </A>
Zhang H.
Chen C.-Y.
Liu
R.-H.
Xu Q.
Liu J.-H.
Synth.
Commun.
2008,
38:
4445
<A NAME="RW17710ST-6C">6c </A>
Xie Y.
Mo W.-M.
Xu D.
Shen Z.-L.
Sun N.
Hu
B.-X.
Hu X.-Q.
J. Org. Chem.
2007,
72:
4288
<A NAME="RW17710ST-6D">6d </A>
Liu
R.-H.
Dong C.-Y.
Liang X.-M.
Wang X.-J.
Hu X.-Q.
J.
Org. Chem.
2005,
70:
729
<A NAME="RW17710ST-6E">6e </A>
Liu R.-H.
Liang X.-M.
Dong C.-Y.
Hu X.-Q.
J. Am. Chem. Soc.
2004,
126:
4112
<A NAME="RW17710ST-6F">6f </A>
Yang G.-Y.
Wang W.
Zhu W.-M.
An C.-B.
Gao
X.-Q.
Song M.-P.
Synlett
2010,
437
<A NAME="RW17710ST-7">7 </A>
Djerassi C.
Scholz CR.
J. Am. Chem. Soc.
1948,
70:
417
<A NAME="RW17710ST-8">8 </A>
Doxsee KM.
Hutchison JE. In Green Organic Chemistry
Thompson
Brooks/Cole;
Pacific Grove CA:
2004.
p.120-124
<A NAME="RW17710ST-9">9 </A>
Suarez AR.
Baruzzi AM.
Rossi LI.
J. Org. Chem.
1998,
63:
5689
<A NAME="RW17710ST-10A">10a </A>
Bosch E.
Kochi JK.
J.
Org. Chem.
1996,
60:
3172
<A NAME="RW17710ST-10B">10b </A>
Roy S.
Baiker A.
Chem. Rev.
2009,
109:
4054
<A NAME="RW17710ST-11">11 </A>
Silverstein RM.
Webster FX.
Kiemle DJ. In Spectrometric
Identification of Organic Compounds
John Wiley
and Sons, Inc.;
New York:
2005.
<A NAME="RW17710ST-12">12 </A>
Thiemann M.
Scheibler E.
Wiegand KW.
Nitric Acid, Nitrous Acid, and Nitrogen Oxides , In Ullmann’s Encyclopedia of Industrial
Chemistry
Wiley-VCH;
Weinheim:
2005.
<A NAME="RW17710ST-13">13 </A>
General Methods
¹ H
NMR and ¹³ C NMR spectra were obtained
with a Bruker AVANCE 600 spectrometer in CDCl3 with TMS
as an internal standard. Infrared spectra were recorded with a Bruker
Tensor 27 FT-IR spectrometer using KBr pellets. GC-MS was performed
on a FINNIGAN Trace DSQ chromatograph.
Procedure
for Oxidation of Sulfide Using KNO
3
-PyHBr
3
/Br
2
as Catalyst
A typical experiment
was carried out in an open reaction tube. Sulfide (1 mmol) was added
to the mixture of KNO3 (0.1 mmol) and PyHBr3 (or
bromine; 0.15 mmol) in MeCN (2 mL). The reaction mixture was stirred
under aerial conditions at r.t. The reaction progress was detected
by GC and TLC. After the starting material had disappeared, Na2 S2 O3 aq
solution was used to quench the reaction. CH2 Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2 Cl2 .
The combined organic layers were washed with H2 O and
dried over MgSO4 . The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative
Spectral Data of Sulfoxide - Methyl Phenyl Sulfoxide
IR
(KBr): νmax = 3265, 1477, 1038, 749,
692 cm-¹ . ¹ H NMR (600
MHz, CDCl3 ): δ = 2.73
(s, 3 H), 7.48-7.54 (m, 3 H), 7.64-7.65 (d, 2
H, J = 7.44
Hz). ¹³ C NMR (150 MHz, CDCl3 ): δ = 44.13,
123.6, 129.5, 131.2, 145.7. MS (EI, 70 eV): m/z (%) = 140 [M+ ].³h
Procedure for Oxidation of Benzaldehydes
and Acetophenones Using KNO
3
-Br
2
/PyHBr
3
as Catalyst
A typical experiment
was carried out in an open reaction tube. Benzaldehyde or acetophenone
(1 mmol) was added to the mixture of KNO3 (0.2 mmol)
and bromine (0.3 mmol) in MeCN (2 mL). The reaction mixture was
stirred under aerial conditions at 50 ˚C. The reaction
progress was detected by GC and TLC. After the starting material
had disappeared, Na2 S2 O3 aq solution
was used to quench the reaction. CH2 Cl2 was
added to the reaction mixture, and the two phases were separated.
The aqueous layer was extracted with CH2 Cl2 .
The combined organic layers were washed with H2 O and
dried over MgSO4 . The solvent was removed under vacuum,
and the residue was purified by chromatography.
Representative Spectral Data of Aldehyde - Benzaldehyde
IR
(KBr): νmax = 3064, 2819, 1701, 1311,
1203, 746 cm-¹ .
¹ H
NMR (600 MHz, CDCl3 ): δ = 7.51-7.54
(t, 2 H, J = 7.54 Hz),
7.61-7.64 (t, 1 H, J = 7.43
Hz), 7.87-7.88 (d, 2 H, J = 7.69
Hz), 10.00 (s, 1 H). ¹³ C NMR (150 MHz,
CDCl3 ): δ = 129.0,
129.7, 134.4, 136.4, 192.4. MS (EI, 70 eV): m/z (%) = 106 [M+ ].²c