References and Notes
1 Postdoctoral Fellow of the Research
Foundation-Flanders (FWO).
2a
Lu P.
Tetrahedron
2010,
66:
2549
2b
Abbaspour Tehrani K.
De Kimpe N.
Curr.
Org. Chem.
2009,
13:
854
2c
Padwa A. In Comprehensive Heterocyclic Chemistry III
Vol.
1:
Katritzky AR.
Ramsden CA.
Scriven EFV.
Taylor RJK.
Elsevier;
Oxford:
2008.
p.1-104
2d
Aziridines and
Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
2e
Hu XE.
Tetrahedron
2004,
60:
2701
2f
McCoull W.
Davis FA.
Synthesis
2000,
1347
2g
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
599
2h
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
For some selected publications on
the influence of the aziridine substitution pattern on C-N
and C-C bond cleavage, see:
3a
Paasche A.
Arnone M.
Fink RF.
Schirmeister T.
Engels B.
J.
Org. Chem.
2009,
74:
5244
3b
Banks HD.
J. Org. Chem.
2010,
75:
2510
3c
Dauban P.
Malik G.
Angew. Chem. Int. Ed.
2009,
48:
9026
3d
Gaebert C.
Mattay J.
Tetrahedron
1997,
53:
14297
3e
Colpaert F.
Mangelinckx S.
Giubellina N.
De Kimpe N.
Tetrahedron
2011,
67:
1258
4
Joule JA.
Mills K.
Heterocyclic
Chemistry
4th ed.:
Blackwell Science;
Oxford:
2000.
p.237
5 For a recent review on the asymmetric
synthesis of aziridines, see: Pellissier H.
Tetrahedron
2010,
66:
1509
6
Ohno H. In Aziridines and Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
7
Olofsson B.
Khamrai U.
Somfai P.
Org.
Lett.
2000,
2:
4087
8
Aoyama H.
Mimura N.
Ohno H.
Ishii K.
Toda A.
Tamamura H.
Otaka A.
Fujii N.
Ibuka T.
Tetrahedron Lett.
1997,
38:
7383
9
Ley SV.
Middleton B.
Chem. Commun.
1998,
1995
10a
Åhman J.
Jarevång T.
Somfai P.
J. Org. Chem.
1996,
61:
8148
10b
Åhman J.
Somfai P.
J. Am. Chem.
Soc.
1994,
116:
9781
11a
Hassner A.
Chau W.
Tetrahedron
Lett.
1982,
23:
1989
11b
Lindström UL.
Somfai P.
Chem.
Eur. J.
2001,
7:
94
11c
Fantauzzi S.
Gallo E.
Caselli A.
Piangiolino C.
Ragaini F.
Re N.
Cenini S.
Chem.
Eur. J.
2009,
15:
1241
12a
Atkinson RS.
Rees CW.
Chem. Commun.
1967,
1232
12b
Gilchrist TL.
Rees CW.
Stanton E.
J. Chem. Soc. C
1971,
3036
12c
Hudlicky T.
Frazier JO.
Seoane G.
Tiedje M.
Seoane A.
Kwart LD.
Beal C.
J.
Am. Chem. Soc.
1986,
108:
3755
12d
Hudlicky T.
Seoane G.
Lovelace TC.
J.
Org. Chem.
1988,
53:
2094
12e
Hudlicky T.
Sinai-Zingde G.
Seoane G.
Synth. Commun.
1987,
17:
1155
12f
Hirner S.
Somfai P.
Synlett
2005,
3099
12g
Borel D.
Gelas-Mialhe Y.
Vessière R.
Can.
J. Org. Chem.
1976,
54:
1590
12h
Knight JG.
Muldowney MP.
Synlett
1995,
949
13a
Brichacek M.
Lee D.
Njardarson JT.
Org. Lett.
2008,
10:
5023
13b
Li A.-H.
Dai L.-X.
Hou X.-L.
Chen M.-B.
J. Org. Chem.
1996,
61:
4641
13c
Hortmann AG.
Koo
J.-Y.
J.
Org. Chem.
1974,
39:
3781
14a
Scheiner P.
J. Org. Chem.
1967,
32:
2628
14b
Logothetis AL.
J. Am. Chem. Soc.
1965,
87:
749
14c
Hudlicky T.
Reed JW. In Comprehensive
Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.899-970
14d
Somfai P.
Åhman J. In Targets
in Heterocyclic Systems
Italian Society of Chemistry;
Rome:
1999.
p.341
15
Mente PG.
Heine HW.
J. Org. Chem.
1971,
36:
3076
16a
Lee Y.
Huang H.
Sayre LM.
J. Am. Chem. Soc.
1996,
118:
7241
16b
Wang Y.-X.
Mabic S.
Castagnoli N.
Bioorg.
Med. Chem.
1998,
6:
143
16c
Williams CH.
Lawson J.
Biochem.
J.
1998,
336:
63
16d
Lee Y.
Ling
K.-Q.
Lu X.
Silverman RB.
Shepard EM.
Dooley DM.
Sayre LM.
J. Am. Chem. Soc.
2002,
124:
12135
16e
Zhang Y.
Ran C.
Zhou G.
Sayre LM.
Bioorg. Med. Chem.
2007,
15:
1868
16f
Pretorius A.
Ogunrombi MO.
Terre’Blanche G.
Castagnoli N.
Bergh JJ.
Petzer
JP.
Bioorg. Med. Chem.
2008,
16:
8813
17
Ogunrombi MO.
Malan SF.
Terre’Blanche G.
Castagnoli N.
Bergh JJ.
Petzer JP.
Bioorg. Med. Chem.
2008,
16:
2463
18a
Bujard M.
Briot A.
Gouverneur V.
Mioskowski C.
Tetrahedron
Lett.
1999,
40:
8785
18b
Dondas HA.
Balme G.
Clique B.
Grigg R.
Hodgeson A.
Morris J.
Sridharan V.
Tetrahedron
Lett.
2001,
42:
8673
18c
Dondas HA.
Clique B.
Cetinkaya B.
Grigg R.
Kilner C.
Morris J.
Sridharan V.
Tetrahedron
2005,
61:
10652
18d
Verendel JJ.
Zhou T.
Li J.-Q.
Paptchikhine A.
Lebedev O.
Andersson PG.
J. Am. Chem. Soc.
2010,
132:
8880
19
Hercouet A.
Neu A.
Peyronel J.-F.
Carboni B.
Synlett
2002,
829
20
Chang M.-Y.
Pai C.-L.
Kung Y.-H.
Tetrahedron
Lett.
2006,
47:
855
21
Nicolaou KC.
Krasovskiy A.
Majumder U.
Trépanier VE.
Chen DY.-K.
J. Am. Chem. Soc.
2009,
131:
3690
22a
Davis FA.
Reddy RE.
Szewczyk JM.
Reddy GV.
Portonovo PS.
Zhang H.
Fanelli D.
Reddy RT.
Zhou P.
Caroll PJ.
J. Org. Chem.
1997,
62:
2555
22b
Zhou P.
Chen B.-C.
Davis FA.
Tetrahedron
2004,
60:
8003 ; and references cited therein
23a
Cohan DA.
Lui G.
Ellman JA.
Tetrahedron
1999,
55:
8883
23b
Ellman JA.
Owens TD.
Tang TP.
Acc. Chem. Res.
2002,
35:
984
23c
Ellman JA.
Pure Appl. Chem.
2003,
75:
39
23d
Robak MT.
Herbage MA.
Ellman JA.
Chem. Rev.
2010,
110:
3600
24a
Ferreira F.
Botuha C.
Chemla F.
Pérez-Luna A.
Chem.
Soc. Rev.
2009,
38:
1162
24b
Morton D.
Stockman RA.
Tetrahedron
2006,
62:
8869
25a
Denolf B.
Mangelinckx S.
Törnroos KW.
De Kimpe N.
Org. Lett.
2006,
8:
3129
25b
Denolf B.
Mangelinckx S.
Törnroos KW.
De Kimpe N.
Org.
Lett.
2007,
9:
187
25c
Denolf B.
Leemans E.
De Kimpe N.
J.
Org. Chem.
2007,
72:
3211
25d
Malkov AV.
Stončius S.
Kočovský P.
Angew. Chem. Int. Ed.
2007,
46:
3722
25e
Denolf B.
Leemans E.
De Kimpe N.
J.
Org. Chem.
2008,
73:
5662
25f
Hodgson DM.
Kloesges J.
Evans B.
Org. Lett.
2008,
10:
2781
25g
Chen Q.
Li J.
Yuan C.
Synthesis
2008,
2986
25h
Leemans E.
Mangelinckx S.
De Kimpe N.
Synlett
2009,
1265
25i
Hodgson DM.
Kloesges J.
Evans B.
Synthesis
2009,
1923
25j
Colpaert F.
Mangelinckx S.
Leemans E.
De Kimpe N.
Org. Biomol. Chem.
2010,
8:
3251
26a
De Kimpe N.
Verhé R.
De Buyck L.
Schamp N.
Org. Prep. Proced. Int.
1980,
12:
49
26b
De Kimpe N.
Verhé R.
De Buyck L.
Schamp N.
J. Org. Chem.
1980,
45:
5319
26c
De Kimpe N.
Sulmon P.
Verhé R.
De Buyck L.
Schamp N.
J. Org. Chem.
1983,
48:
4320
27a
Morton D.
Pearson D.
Field RA.
Stockman RA.
Org. Lett.
2004,
6:
2377
27b
Chigboh K.
Morton D.
Nadin A.
Stockman RA.
Tetrahedron Lett.
2008,
49:
4768
27c
Morton D.
Pearson D.
Field RA.
Stockman RA.
Chem. Commun.
2006,
1833
28
Zheng J.-C.
Liao W.-W.
Sun X.-X.
Sun X.-L.
Tang Y.
Dai L.-X.
Deng J.-G.
Org.
Lett.
2005,
7:
5789
29
Kokotos C.
Aggarwal VK.
Org. Lett.
2007,
9:
2099
30
Colyer JT.
Andersen NG.
Tedrow JS.
Soukup TS.
Faul MM.
J. Org. Chem.
2006,
71:
6859
31a
Liu Z.-J.
Mei Y.-Q.
Liu J.-T.
Tetrahedron
2006,
63:
855
31b
Sun X.-W.
Xu M.-H.
Lin G.-Q.
Org.
Lett.
2006,
8:
4979
32
Synthesis of (
R
S
)-
N
-
tert
-Butanesulfinyl 3-Phenyl-3-pyrroline (4a)
α-Chloro imine 5a (0.91 mmol)
was dissolved in dry CH2Cl2 (10 mL), and the
stirred solution was cooled to -78 ˚C.
Two equiv of vinylmagnesium bromide (1 M solution in THF, 1.82 mL,
1.82 mmol) were added to the solution, and the reaction mixture
was allowed to stir for 2 h at -78 ˚C
before being left at -40 ˚C for 4 h.
The reaction mixture was quenched at this temperature by the addition
of aq NH4Cl (5 mL) and immediately extracted with CH2Cl2 (2 × 10
mL). The organic layers were dried (MgSO4, containing
little of K2CO3), filtered, and concentrated.
The mixture was purified by means of recrystallization from Et2O
to afford the pyrroline 4a in 91% yield.
Colorless crystals; mp 55.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.50 (9 H,
s), 3.39 (1 H, dddd, J = 15.8,
5.5, 4.1, 1.4 Hz), 3.85 (1 H, dddd, J = 15.8,
4.3, 3.3, 3.3 Hz), 4.25 (1 H, dddd, J = 18.4,
3.3, 1.7, 1.7 Hz), 4.40 (1 H, dddd, J = 18.4,
4.4, 4.4, 1.7 Hz), 5.99-6.03 (1 H, m), 7.28-7.37
(5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 22.1,
36.9, 48.3, 55.4, 112.6, 125.4, 128.1, 128.6, 135.3, 139.1. MS
(ES, pos. mode): m/z (%) = 194 (100) [M - t-Bu + 2H]+.
IR (KBr): νmax = 1042, 1085, 1364, 1453,
2962 cm-¹. Anal. Calcd for C14H19NOS:
C, 67.43; H, 7.68; N, 5.62. Found: C, 67.17; H, 7.84; N, 5.33. [α]D -28.3 (c 1.03, CH2Cl2).
33
(
R
s
,
S
)-1-(
tert
-Butanesulfinyl)-2-isopropenyl-2-phenylaziridine [(
R
s
,S
)-6]
Yellow crystals; mp 54.2 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.21 (9 H,
s), 1.65 (3 H, s), 2.11 (1 H, s), 3.23 (1 H, s), 4.95 (1 H, s),
5.14 (1 H, s), 7.26-7.47 (5 H, m). ¹³C NMR
(75 MHz, CDCl3): δ = 19.8, 22.8, 30.3,
51.1, 57.4, 112.9, 128.3, 128.5, 129.7, 134.9, 145.4. MS (ES, pos. mode): m/z (%) = 264
(100) [M + H]+. IR
(ATR): νmax = 696, 1074, 1447, 2961
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.04; H, 8.24; N, 5.12. R
f
= 0.28
(PE-EtOAc = 3:1). [α]D -394.7
(c 1.03, CH2Cl2).
34
(
R
S
)-
N
-
tert
-Butanesulfinyl 2-Methyl-4-phenyl-3-pyrroline
(9)
Spectroscopic data of the major diastereomer obtained
from the mixture of diastereomers 9 (dr
86:14). Brown oil. ¹H NMR (300 MHz, CDCl3): δ = 1.51
(9 H, s), 1.53 (3 H, d, J = 6.6
Hz), 3.88-3.98 (1 H, m), 4.20 (1 H, ddd, J = 18.4, 3.0,
1.4 Hz), 4.39 (1 H, ddd, J = 18.4,
4.1, 1.9 Hz), 5.70-5.72 (1 H, m), 7.27-7.37 (5
H, m). ¹³C NMR (75 MHz, CDCl3):
δ = 19.2,
24.5, 42.9, 46.2, 60.9, 122.1, 125.7, 127.9, 128.6, 139.3, 139.8.
MS (ES, pos. mode): m/z (%) = 264
(100)
[M + H]+.
IR (ATR): νmax = 694, 1050, 1447, 2926
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.69; H, 7.99; N, 5.49.
35a
Campi EM.
Jackson WR.
J. Organomet. Chem.
1996,
523:
205
35b
Tomooka K.
Nakazaki A.
Nakai T.
J.
Am. Chem. Soc.
2000,
122:
408
36
Dieter RK.
Yu H.
Org. Lett.
2001,
3:
3855
37
Synthesis of (
R
S
)-
N
-(
tert
-Butanesulfinyl) 3-(4-Methoxy-phenyl)pyrrole
(13e)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.042
g, 0.18 mmol) was dissolved in 1,4-dioxane (10 mL) and the mixture
added dropwise to a solution of (R
S
)-N-(tert-butanesulfinyl)-3-(4-methoxyphenyl)-3-pyrroline
(4e, 0.057 g, 0.20 mmol) in 1,4-dioxane
(10 mL). After stirring for 16 h at r.t., the reaction mixture was
quenched by the addition of a 10% solution of NaHSO3 (5
mL) and immediately extracted with EtOAc (2 × 10
mL). The organic layers were dried (MgSO4), filtered,
and concentrated. The compound was purified by means of column chromatography
to afford (R
S
)-N-(tert-butanesulfinyl)
3-(4-methoxyphenyl)pyrrole (13e, 0.049
g) in 87% yield; black crystals; mp 133.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.45 (9 H,
s), 3.82 (3 H, s), 5.86 (1 H, dd, J = 9.9,
1.7 Hz), 6.89-6.93 (2 H, m), 7.22-7.26 (2 H, m),
7.53 (1 H, dd, J = 9.9,
2.2 Hz), 7.68-7.70 (1 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 23.2, 55.4, 62.1,
88.8, 113.8, 114.3, 126.6, 131.4, 139.8, 144.9, 158.2. MS (ES, pos.
mode): m/z (%) = 278
(100) [M + H]+. IR (ATR): νmax = 1187,
1367, 1591, 2928 cm-¹. Anal. Calcd
for C15H19NO2S: C, 64.95; H, 6.90;
N, 5.05. Found: C, 65.07; H, 6.64; N, 4.89. R
f
= 0.29
(PE-EtOAc = 3:1). [α]D = 28.7
(c 0.09, CH2Cl2).
38a
Donohoe TJ.
Orr AJ.
Gosby K.
Bingham M.
Eur. J.
Org. Chem.
2005,
1969
38b
Beck EM.
Hatley R.
Gaunt MJ.
Angew. Chem. Int. Ed.
2008,
47:
3004
38c
Wang X.
Lane BS.
Sames D.
J.
Am. Chem. Soc.
2005,
127:
4996
38d
Dohi T.
Morimoto K.
Takenaga N.
Goto A.
Maruyama A.
Kiyono Y.
Tohma H.
Kita Y.
J. Org. Chem.
2007,
72:
109
38e
Balasubramanian T.
Strachan J.-P.
Boyle PD.
Lindsey JS.
J.
Org. Chem.
2000,
65:
7919
38f
Kim H.-J.
Lindsey JS.
J. Org. Chem.
2005,
70:
5475
39a
Aponick A.
Li C.-Y.
Malinge J.
Marques EF.
Org. Lett.
2009,
11:
4624
39b
Join B.
Yamamoto T.
Itami K.
Angew.
Chem. Int. Ed.
2009,
48:
3644
39c
Du X.
Xie X.
Liu Y.
J.
Org. Chem.
2010,
75:
510
39d
Wen J.
Qin S.
Ma L.-F.
Dong L.
Zhang J.
Liu S.-S.
Duan Y.-S.
Chen S.-Y.
Hu C.-W.
Yu X.-Q.
Org.
Lett.
2010,
12:
2694
40
Dondas HA.
De Kimpe N.
Tetrahedron Lett.
2005,
46:
4179
41
Synthesis of 3,4-Dibromo-3-phenylpyrrolidine
(14)
A solution of (R
S
)-N-(tert-butanesulfinyl)-3-phenyl-3-pyrroline
(4a, 0.1 g, 0.40 mmol) in dry CH2Cl2 (10
mL) was cooled to 0 ˚C and Br2 (1.05
equiv, 0.023 mL, 0.42 mmol) was added dropwise. After stirring for
1 h, Et3N (1 equiv, 0.06 mL, 0.40 mmol) was added, and
the reaction mixture was allowed to stir for another 30 min at r.t.
H2O (10 mL) was added, and the reaction mixture was immediately extracted
with CH2Cl2 (2 × 10
mL). The combined organic layers were dried (MgSO4),
filtered, and concentrated. The compound was purified by means of
column chromatography (R
f
= 0.18;
PE-EtOAc = 3:1) to afford 3,4-dibromo-3-phenylpyrrolidine
(14, 0.04 g) in 33% yield. Light
brown oil. ¹H NMR (300 MHz, CDCl3): δ = 3.73
(1 H, dd, J = 14.9,
3.3 Hz), 3.91-3.99 (1 H, m), 4.35 (1 H, dd, J = 15.1,
4.1 Hz), 4.62 (1 H, dd, J = 15.4,
11.6 Hz), 5.11-5.23 (2 H, m), 7.38-7.48 (5 H,
m). ¹³C NMR (75
MHz, CDCl3): δ = 49.9, 50.8, 53.0,
66.3, 126.2, 129.1, 129.6, 140.0. IR (ATR): νmax = 1156,
1337, 2359, 3271 cm-¹. Anal. Calcd
for C10H11Br2N: C, 39.38; H, 3.64;
N, 4.59. Found: C, 39.03; H, 3.88; N, 4.21.
42
Gajda T.
Zwierzak A.
Liebigs Ann. Chem.
1986,
992