RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260006
Hydrogen Peroxide and Arenediazonium Salts as Reagents for a Radical Beckmann-Type Rearrangement
Publikationsverlauf
Publikationsdatum:
15. April 2011 (online)
Abstract
The reductive ring-opening of hydroperoxides derived from cyclic ketones leads to alkyl radicals which can effectively be trapped by arenediazonium salts. This synthetic transformation yielding azo carboxylic acids or lactams, after a reductive step, can be classified as a radical version of the well-known Beckmann rearrangement. In this article, we present results on the scope, the limitations and possible applications of this new reaction type.
Key words
radical reaction - rearrangement - ketones - carboxylic acids - azo compounds
- Supporting Information for this article is available online:
- Supporting Information
- 1
Metzger H. Houben-Weyl Vol. X/4: Georg Thieme Verlag; Stuttgart: 1968. p.1-308 - 2 For a first report, see:
Beckmann E. Ber. Dtsch. Chem. Ges. 1886, 19: 988 - For review articles, see:
-
3a For a first report, see:
Blatt AH. Chem. Rev. 1933, 12: 215 ; and references cited therein -
3b
Jones B. Chem. Rev. 1944, 35: 335 -
3c
Gawley RE. Org. React. 1988, 35: 1 -
3d
Craig D. Comprehensive Organic Synthesis Vol. 7:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.689 ; and references cited therein -
3e
Smith MB.March J. March’s Advanced Organic Chemistry 6th ed.: John Wiley & Sons; Hoboken: 2007. p.1613 - 4
Hendrickson JB.Cram DJ.Hammond GS. Organic Chemistry 3rd ed.: McGraw-Hill; Tokyo: 1970. p.708 - 5 For the use of SOCl2,
see:
Butler RN.O’Donoghue DA. J. Chem. Res., Synop. 1983, 18 - 6 For rearrangements of oxime p-toluenesulfonates using silica gel,
see:
Costa A.Mestres R.Riego JM. Synth. Commun. 1982, 12: 1003 - 7 For a report on the application of
MoO3 on silica gel, see:
Dongare MK.Bhagwat VV.Ramana CV.Gurjar MK. Tetrahedron Lett. 2004, 45: 4759 - 8 For the use of montmorillonite KSF,
see:
Meshram HM. Synth. Commun. 1990, 20: 3253 - 9 For RuCl3-mediated Beckmann
rearrangements, see:
De S K. Synth. Commun. 2004, 34: 3431 - 10 For Y(OTf)3-mediated
Beckmann rearrangements, see:
De S K. Org. Prep. Proced. Int. 2004, 36: 383 - 11 For BiCl3-mediated Beckmann
rearrangements, see:
Thakur AJ.Boruah A.Prajapati D.Sandhu JS. Synth. Commun. 2000, 30: 2105 - 12 For the use of 2,4,6-trichloro-1,3,5-triazine,
see:
Luca LD.Giacomelli G.Porcheddu A. J. Org. Chem. 2002, 67: 6272 - 13 For Ga(OTf)3-mediated
Beckmann rearrangements, see:
Yan P.Batamack P.Prakash GKS.Olah GA. Catal. Lett. 2005, 103: 165 - For the use of rare earth exchanged zeolites, see:
-
14a
Thomas B.Prathapan S.Sugunan S. Microporous Mesoporous Mater. 2005, 84: 137 -
14b
Thomas B.Sugunan S. Microporous Mesoporous Mater. 2006, 96: 55 -
15a
Zhang Z.Li J.Yang X. Catal. Lett. 2007, 118: 300 -
15b
Li Z.Lu Z.Ding R.Yang J. J. Chem. Res. 2006, 668 -
15c
Priya SV.Mabel JH.Palanichamy M.Murugesan V. Stud. Surf. Sci. Catal. 2008, 174: 1147 - For Beckmann rearrangements in the vapor phase, see:
-
16a
Maheswari R.Shanthi K.Sivakumar T.Narayanan S. Appl. Catal., A 2003, 248(1-2): 291 -
16b
Mao D.Chen Q.Lu G. Appl. Catal., A 2003, 244(2): 273 -
16c
Izumi Y.Ichihashi H.Shimazu Y.Kitamura M.Sato H. Bull. Chem. Soc. Jpn. 2007, 80: 1280 - For Beckmann rearrangements in supercritical water, see:
-
17a
Ikushima Y.Hatakeda K.Sato O.Yokoyama T.Arai M. J. Am. Chem. Soc. 2000, 122: 1908 -
17b
Boero M.Ikeshoji T.Liew CC.Terakura K.Parrinello M. J. Am. Chem. Soc. 2004, 126: 6280 - For Beckmann rearrangements in ionic liquids, see:
-
18a
Peng J.Deng Y. Tetrahedron Lett. 2001, 42: 403 -
18b
Ren RX.Zueva LD.Ou W. Tetrahedron Lett. 2001, 42: 8441 -
18c
Lee JK.Kim D.Song CE.Lee S. Synth. Commun. 2003, 33: 2301 - 19 For a review on nitrogen-centered
radical scavengers, see:
Höfling S.Heinrich MR. Synthesis 2011, 173 - For sulfonyl azides as N-centered radical scavengers, see:
-
20a
Renaud P.Ollivier C. J. Am. Chem. Soc. 2000, 122: 6496 -
20b
Renaud P.Panchaud P.Chabaud L.Landais Y.Ollivier C.Zigmantas S. Chem. Eur. J. 2004, 10: 3606 -
20c
Renaud P.Kapat A.Nyfeler E.Giuffredi GT. J. Am. Chem. Soc. 2009, 131: 17746 - For nitroso compounds as N-centered radical scavengers, see:
-
21a
Girard P.Guillot N.Motherwell WB.Potier P. J. Chem. Soc., Chem. Commun. 1995, 2385 -
21b
Girard P.Guillot N.Motherwell WB.Hay-Motherwell RS.Potier P. Tetrahedron 1999, 55: 3573 - For imines as N-centered radical scavengers, see:
-
22a
Ryu I.Matsu K.Minakata S.Komatsu M. J. Am. Chem. Soc. 1998, 120: 5838 -
22b
Lamas C.-M.Vaillard SE.Wibbeling B.Studer A. Org. Lett. 2010, 12: 2072 - For azo compounds as N-centered radical scavengers, see:
-
23a
Alberti A.Bedogni N.Benaglia M.Leardini R.Nanni D.Pedulli GF.Tundo A.Zanardi G. J. Org. Chem. 1992, 57: 607 -
23b
Baigrie BD.Cadogan JIG.Sharp JT. J. Chem. Soc., Perkin Trans. 1 1975, 1029 - For diazirines as N-centered radical scavengers, see:
-
24a
Barton DHR.Jaszberenyi JC.Theodorakis EA. J. Am. Chem. Soc. 1992, 114: 5904 -
24b
Barton DHR.Jaszberenyi JS.Theodorakis EA.Reibenspies JH.
J. Am. Chem. Soc. 1993, 115: 8050 - For recent reports on arenediazonium salts as radical scavengers, see:
-
25a
Heinrich MR.Blank O.Wölfel S. Org. Lett. 2006, 8: 3323 -
25b
Blank O.Heinrich MR. Eur. J. Org. Chem. 2006, 4331 -
25c
Heinrich MR.Blank O.Wetzel A. Synlett 2006, 3352 -
25d
Heinrich MR.Blank O.Wetzel A. J. Org. Chem. 2007, 72: 476 -
25e
Blank O.Wetzel A.Ullrich D.Heinrich MR. Eur. J. Org. Chem. 2008, 3179 - 26
Criegee R. Houben-Weyl Vol. VIII: Georg Thieme Verlag; Stuttgart: 1968. p.1-74 - For radical reactions employing hydroperoxides (as radical sources) in combination with arenediazonium salts (as radical scavengers), see:
-
27a
Citterio A.Minisci F. J. Org. Chem. 1982, 47: 1759 -
27b
Blank O.Raschke N.Heinrich MR. Tetrahedron Lett. 2010, 51: 1758 - For the iron(II) or copper(I)-mediated cleavage of (hydro-)peroxides, see:
-
29a
Walling C.Zavitsas AA.
J. Am. Chem. Soc. 1963, 85: 2084 -
29b
Walling C. Acc. Chem. Res. 1975, 8: 125 -
29c
Schreiber SL. J. Am. Chem. Soc. 1980, 102: 6163 -
29d
Schreiber SL.Hulin B.Liew W.-F. Tetrahedron 1986, 42: 2945 - For review articles on oxygen-centered radicals, see:
-
30a
Suárez E.Rodriguez MS. In Radicals in Organic Synthesis 1st ed., Vol. 2:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.440 -
30b
Hartung J.Gottwald T.Spehar K. Synthesis 2002, 1469 -
31a
Francisco CG.González CC.Kennedy AR.Paz NR.Suárez E. Chem. Eur. J. 2008, 14: 6704 -
31b
Alonso-Cruz CR.Kennedy AR.Rodriguez MS.Suárez E. Tetrahedron Lett. 2007, 48: 7207 -
31c
Dichtl A.Seyfried M.Schoening K.-U. Synlett 2008, 1877 - For review articles on arenediazonium salts as sources for aryl radicals, see:
-
32a
Galli C. Chem. Rev. 1988, 88: 765 -
32b
Heinrich MR. Chem. Eur. J. 2009, 15: 820 - For the formation of diversely substituted carboxylic and dicarboxylic acids from cyclic hydroperoxides upon reduction, see:
-
33a
Cooper W.Davison WHT. J. Chem. Soc. 1952, 1180 -
33b
Hawkins EGE. J. Chem. Soc. 1955, 3463 -
33c
Kharasch MS.Nudenberg W. J. Org. Chem. 1954, 19: 1921 -
33d
Braunwarth JB.Crosby GW. J. Org. Chem. 1962, 27: 2064 -
33e
De La Mare HE.Kochi JK.Rust FF. J. Am. Chem. Soc. 1963, 85: 1437 - For recent reports on bond strengths and radical stability, see:
-
34a
Zipse H. Top. Curr. Chem. 2006, 263: 163 -
34b
Zavitsas A. J. Org. Chem. 2008, 73: 9022 - 35 For an example of a temperature-dependent
ring-opening reaction, see:
Beckwith ALJ.Kazlauskas R.Syner-Lyons MR. J. Org. Chem. 1983, 48: 4718 - 36 For a computational study on the
regioselectivity of alkoxy radical fragmentation, see:
Wilsey S.Dowd P.Houk KN. J. Org. Chem. 1999, 64: 8801 - For syntheses of hydroperoxides from cyclic ketones and studies on their structure see
-
37a
Milas NA.Harris SA.Panagiotakos PC. J. Am. Chem. Soc. 1939, 61: 2430 -
37b
Criegee R.Schnorrenberg W.Becke J. Justus Liebigs Ann. Chem. 1949, 565: 7 -
37c
Karasch MS.Sosnovsky G. J. Org. Chem. 1958, 23: 1322 -
37d
Brown N.Hartig MJ.Roedel MJ.Anderson AW.Schweitzer CE. J. Am. Chem. Soc. 1955, 77: 1756 - 38 For a study on equilibrium data
for the formation of cyclic hydroperoxides in dioxane see:
Jacobson SE.Mares F.Zambri PM. J. Am. Chem. Soc. 1979, 101: 6938 - 40
Röder E.Krauß H. Liebigs Ann. Chem. 1992, 177 - 41
Heinrich MR.Blank O.Ullrich D.Kirschstein M.
J. Org. Chem. 2007, 72: 9609 - 42
Elofson RM.Gadallah FF. J. Org. Chem. 1971, 36: 1769 - Two rare examples for the preparation of azo carboxylic acids have been reported by
-
43a
Fusco R.Romani R. Gazz. Chim. Ital. 1948, 78: 342 -
43b
Khaimov IN. Trudy Tadzhik. Sel’skokhoz. Inst. 1958, 1: 33 - 45 The instability of related azo compounds
to chromatography was also reported in:
Baldwin JE.Adlington RM.Bottaro JC.Kolhe JN.Perry MWD.Jain AU. Tetrahedron 1986, 42: 4223 - 46 A mixture was obtained when using
classical Beckmann conditions:
Schäffler A.Ziegenbein W. Chem. Ber. 1955, 88: 1374 - 49
de Vleeschouwer F.van Speybroeck V.Waroquier M.Geerlings P.de Proft F. Org. Lett. 2007, 9: 2721 -
50a
See ref. 25d.
-
50b
Haag BA.Zhang Z.Li J.Knochel P. Angew. Chem. Int. Ed. 2010, 49: 9513 -
50c
Rossiter S.Folkes LK.Wardman P. Bioorg. Med. Chem. Lett. 2002, 12: 2523 - 51 For a formation of lactams from
azo carboxylic esters, see:
Baldwin JE.Adlington RM.Jain AU.Kolhe JN.Perry MWD. Tetrahedron 1986, 42: 4247 -
52a
Molina CL.Chow CP.Shea KJ. J. Org. Chem. 2007, 72: 6816 -
52b
Rautenstrauch V.Delay F. Angew. Chem. Int. Ed. 1980, 19: 726 -
52c
Matsuyama H.Itoh N.Matsumoto A.Ohira N.Hara K.Yoshida M.Iyoda M. J. Chem. Soc., Perkin Trans. 1 2001, 2924 -
52d
Fernández R.Ferrete A.Llera JM.Magriz A.Martín-Zamora E.Díez E.Lassaletta JM. Chem. Eur. J. 2004, 10: 737 -
52e
Friestad GK.Qin J. J. Am. Chem. Soc. 2001, 123: 9922 -
54a
Gruner M.Pfeifer D.Becker HGO.Radeglia R.Epperlein J. J. Prakt. Chem. 1985, 327: 63 -
54b
Bahr JL.Yang J.Kosynkin DV.Bronikowski MJ.Smalley RE.Tour JM. J. Am. Chem. Soc. 2001, 123: 6536 - 55
Burnell DJ.Wu Y. Can. J. Chem. 1990, 68: 804 - 56
Haynes RK.King GR.Vonwiller SC. J. Org. Chem. 1994, 59: 4743 -
57a
Golding BT.Bleasdale C.McGinnis J.Müller S.Rees HT.Rees NH.Farmer PB.Watson WP. Tetrahedron 1997, 53: 4063 -
57b
Snyder JK.Stock LM. J. Org. Chem. 1980, 45: 886 -
58a
Takemiya A.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 14800 -
58b
Schmidt AM.Eilbracht P. Org. Biomol. Chem. 2005, 3: 2333 - 59
Bullock MW.Fox SW. J. Am. Chem. Soc. 1951, 73: 5155 - 60
Ramalingan C.Park Y.-T. Synthesis 2008, 1351
References
For hydrogenolytic cleavage of N=N bonds, see ref. 25a and 25e.
39For reports of varying yields of dodecanedioic acid dependent on the composition of peroxide, see ref. 33b and 37c.
44After column chromatography on silica gel, a number of new compounds were detected that had not been present before. Several attempts including the variation of solvents and the use of deactivated silica gel were unsuccessful in preventing the partial decomposition of the azo carboxylic acids 9. Independent NMR experiments pointed to the formation of hydrazones as first intermediates of the decomposition pathway.
47Better selectivities can be observed with the newly developed reagents, see refs. 8, 11, 12 and 13.
48Exceptions are carboxylic acids 9ac, 9da, and 9ha, which were accompanied by hydrazones in the ratios 9/hydrazone 2:1, 3:1, and 2:1, respectively.
53The literature procedure given in ref. 52d was slightly modified by refluxing the reaction mixture for 4 hours.