Synthesis 2011(10): 1515-1525  
DOI: 10.1055/s-0030-1260006
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Hydrogen Peroxide and Arenediazonium Salts as Reagents for a Radical Beckmann-Type Rearrangement

Agnes Prechter, Markus R. Heinrich*
Department für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany
Fax: +49(9131)8522585 ; e-Mail: Markus.Heinrich@medchem.uni-erlangen.de ;
Weitere Informationen

Publikationsverlauf

Received 20 December 2010
Publikationsdatum:
15. April 2011 (online)

Abstract

The reductive ring-opening of hydroperoxides derived from cyclic ketones leads to alkyl radicals which can effectively be trapped by arenediazonium salts. This synthetic transformation yielding azo carboxylic acids or lactams, after a reductive step, can be classified as a radical version of the well-known Beckmann rearrangement. In this article, we present results on the scope, the limitations and possible applications of this new reaction type.

    References

  • 1 Metzger H. Houben-Weyl   Vol. X/4:  Georg Thieme Verlag; Stuttgart: 1968.  p.1-308  
  • 2 For a first report, see: Beckmann E. Ber. Dtsch. Chem. Ges.  1886,  19:  988 
  • For review articles, see:
  • 3a For a first report, see: Blatt AH. Chem. Rev.  1933,  12:  215 ; and references cited therein
  • 3b Jones B. Chem. Rev.  1944,  35:  335 
  • 3c Gawley RE. Org. React.  1988,  35:  1 
  • 3d Craig D. Comprehensive Organic Synthesis   Vol. 7:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.689 ; and references cited therein
  • 3e Smith MB. March J. March’s Advanced Organic Chemistry   6th ed.:  John Wiley & Sons; Hoboken: 2007.  p.1613 
  • 4 Hendrickson JB. Cram DJ. Hammond GS. Organic Chemistry   3rd ed.:  McGraw-Hill; Tokyo: 1970.  p.708 
  • 5 For the use of SOCl2, see: Butler RN. O’Donoghue DA. J. Chem. Res., Synop.  1983,  18 
  • 6 For rearrangements of oxime p-toluenesulfonates using silica gel, see: Costa A. Mestres R. Riego JM. Synth. Commun.  1982,  12:  1003 
  • 7 For a report on the application of MoO3 on silica gel, see: Dongare MK. Bhagwat VV. Ramana CV. Gurjar MK. Tetrahedron Lett.  2004,  45:  4759 
  • 8 For the use of montmorillonite KSF, see: Meshram HM. Synth. Commun.  1990,  20:  3253 
  • 9 For RuCl3-mediated Beckmann rearrangements, see: De S K. Synth. Commun.  2004,  34:  3431 
  • 10 For Y(OTf)3-mediated Beckmann rearrangements, see: De S K. Org. Prep. Proced. Int.  2004,  36:  383 
  • 11 For BiCl3-mediated Beckmann rearrangements, see: Thakur AJ. Boruah A. Prajapati D. Sandhu JS. Synth. Commun.  2000,  30:  2105 
  • 12 For the use of 2,4,6-trichloro-1,3,5-triazine, see: Luca LD. Giacomelli G. Porcheddu A. J. Org. Chem.  2002,  67:  6272 
  • 13 For Ga(OTf)3-mediated Beckmann rearrangements, see: Yan P. Batamack P. Prakash GKS. Olah GA. Catal. Lett.  2005,  103:  165 
  • For the use of rare earth exchanged zeolites, see:
  • 14a Thomas B. Prathapan S. Sugunan S. Microporous Mesoporous Mater.  2005,  84:  137 
  • 14b Thomas B. Sugunan S. Microporous Mesoporous Mater.  2006,  96:  55 
  • 15a Zhang Z. Li J. Yang X. Catal. Lett.  2007,  118:  300 
  • 15b Li Z.  Lu Z.  Ding R.  Yang J. J. Chem. Res.  2006,  668 
  • 15c Priya SV. Mabel JH. Palanichamy M. Murugesan V. Stud. Surf. Sci. Catal.  2008,  174:  1147 
  • For Beckmann rearrangements in the vapor phase, see:
  • 16a Maheswari R. Shanthi K. Sivakumar T. Narayanan S. Appl. Catal., A  2003,  248(1-2):  291 
  • 16b Mao D. Chen Q. Lu G. Appl. Catal., A  2003,  244(2):  273 
  • 16c Izumi Y. Ichihashi H. Shimazu Y. Kitamura M. Sato H. Bull. Chem. Soc. Jpn.  2007,  80:  1280 
  • For Beckmann rearrangements in supercritical water, see:
  • 17a Ikushima Y. Hatakeda K. Sato O. Yokoyama T. Arai M. J. Am. Chem. Soc.  2000,  122:  1908 
  • 17b Boero M. Ikeshoji T. Liew CC. Terakura K. Parrinello M. J. Am. Chem. Soc.  2004,  126:  6280 
  • For Beckmann rearrangements in ionic liquids, see:
  • 18a Peng J. Deng Y. Tetrahedron Lett.  2001,  42:  403 
  • 18b Ren RX. Zueva LD. Ou W. Tetrahedron Lett.  2001,  42:  8441 
  • 18c Lee JK. Kim D. Song CE. Lee S. Synth. Commun.  2003,  33:  2301 
  • 19 For a review on nitrogen-centered radical scavengers, see: Höfling S. Heinrich MR. Synthesis  2011,  173 
  • For sulfonyl azides as N-centered radical scavengers, see:
  • 20a Renaud P. Ollivier C. J. Am. Chem. Soc.  2000,  122:  6496 
  • 20b Renaud P. Panchaud P. Chabaud L. Landais Y. Ollivier C. Zigmantas S. Chem. Eur. J.  2004,  10:  3606 
  • 20c Renaud P. Kapat A. Nyfeler E. Giuffredi GT. J. Am. Chem. Soc.  2009,  131:  17746 
  • For nitroso compounds as N-centered radical scavengers, see:
  • 21a Girard P. Guillot N. Motherwell WB. Potier P. J. Chem. Soc., Chem. Commun.  1995,  2385 
  • 21b Girard P. Guillot N. Motherwell WB. Hay-Motherwell RS. Potier P. Tetrahedron  1999,  55:  3573 
  • For imines as N-centered radical scavengers, see:
  • 22a Ryu I. Matsu K. Minakata S. Komatsu M. J. Am. Chem. Soc.  1998,  120:  5838 
  • 22b Lamas C.-M. Vaillard SE. Wibbeling B. Studer A. Org. Lett.  2010,  12:  2072 
  • For azo compounds as N-centered radical scavengers, see:
  • 23a Alberti A. Bedogni N. Benaglia M. Leardini R. Nanni D. Pedulli GF. Tundo A. Zanardi G. J. Org. Chem.  1992,  57:  607 
  • 23b Baigrie BD. Cadogan JIG. Sharp JT. J. Chem. Soc., Perkin Trans. 1  1975,  1029 
  • For diazirines as N-centered radical scavengers, see:
  • 24a Barton DHR. Jaszberenyi JC. Theodorakis EA. J. Am. Chem. Soc.  1992,  114:  5904 
  • 24b Barton DHR. Jaszberenyi JS. Theodorakis EA. Reibenspies JH.
    J. Am. Chem. Soc.  1993,  115:  8050 
  • For recent reports on arenediazonium salts as radical scavengers, see:
  • 25a Heinrich MR. Blank O. Wölfel S. Org. Lett.  2006,  8:  3323 
  • 25b Blank O. Heinrich MR. Eur. J. Org. Chem.  2006,  4331 
  • 25c Heinrich MR. Blank O. Wetzel A. Synlett  2006,  3352 
  • 25d Heinrich MR. Blank O. Wetzel A. J. Org. Chem.  2007,  72:  476 
  • 25e Blank O. Wetzel A. Ullrich D. Heinrich MR. Eur. J. Org. Chem.  2008,  3179 
  • 26 Criegee R. Houben-Weyl   Vol. VIII:  Georg Thieme Verlag; Stuttgart: 1968.  p.1-74  
  • For radical reactions employing hydroperoxides (as radical sources) in combination with arenediazonium salts (as radical scavengers), see:
  • 27a Citterio A. Minisci F. J. Org. Chem.  1982,  47:  1759 
  • 27b Blank O. Raschke N. Heinrich MR. Tetrahedron Lett.  2010,  51:  1758 
  • For the iron(II) or copper(I)-mediated cleavage of (hydro-)peroxides, see:
  • 29a Walling C. Zavitsas AA.
    J. Am. Chem. Soc.  1963,  85:  2084 
  • 29b Walling C. Acc. Chem. Res.  1975,  8:  125 
  • 29c Schreiber SL. J. Am. Chem. Soc.  1980,  102:  6163 
  • 29d Schreiber SL. Hulin B. Liew W.-F. Tetrahedron  1986,  42:  2945 
  • For review articles on oxygen-centered radicals, see:
  • 30a Suárez E. Rodriguez MS. In Radicals in Organic Synthesis   1st ed., Vol. 2:  Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001.  p.440 
  • 30b Hartung J. Gottwald T. Spehar K. Synthesis  2002,  1469 
  • 31a Francisco CG. González CC. Kennedy AR. Paz NR. Suárez E. Chem. Eur. J.  2008,  14:  6704 
  • 31b Alonso-Cruz CR. Kennedy AR. Rodriguez MS. Suárez E. Tetrahedron Lett.  2007,  48:  7207 
  • 31c Dichtl A. Seyfried M. Schoening K.-U. Synlett  2008,  1877 
  • For review articles on arenediazonium salts as sources for aryl radicals, see:
  • 32a Galli C. Chem. Rev.  1988,  88:  765 
  • 32b Heinrich MR. Chem. Eur. J.  2009,  15:  820 
  • For the formation of diversely substituted carboxylic and dicarboxylic acids from cyclic hydroperoxides upon reduction, see:
  • 33a Cooper W. Davison WHT. J. Chem. Soc.  1952,  1180 
  • 33b Hawkins EGE. J. Chem. Soc.  1955,  3463 
  • 33c Kharasch MS. Nudenberg W. J. Org. Chem.  1954,  19:  1921 
  • 33d Braunwarth JB. Crosby GW. J. Org. Chem.  1962,  27:  2064 
  • 33e De La Mare HE. Kochi JK. Rust FF. J. Am. Chem. Soc.  1963,  85:  1437 
  • For recent reports on bond strengths and radical stability, see:
  • 34a Zipse H. Top. Curr. Chem.  2006,  263:  163 
  • 34b Zavitsas A. J. Org. Chem.  2008,  73:  9022 
  • 35 For an example of a temperature-dependent ring-opening reaction, see: Beckwith ALJ. Kazlauskas R. Syner-Lyons MR. J. Org. Chem.  1983,  48:  4718 
  • 36 For a computational study on the regioselectivity of alkoxy radical fragmentation, see: Wilsey S. Dowd P. Houk KN. J. Org. Chem.  1999,  64:  8801 
  • For syntheses of hydroperoxides from cyclic ketones and studies on their structure see
  • 37a Milas NA. Harris SA. Panagiotakos PC. J. Am. Chem. Soc.  1939,  61:  2430 
  • 37b Criegee R. Schnorrenberg W. Becke J. Justus Liebigs Ann. Chem.  1949,  565:  7 
  • 37c Karasch MS. Sosnovsky G. J. Org. Chem.  1958,  23:  1322 
  • 37d Brown N. Hartig MJ. Roedel MJ. Anderson AW. Schweitzer CE. J. Am. Chem. Soc.  1955,  77:  1756 
  • 38 For a study on equilibrium data for the formation of cyclic hydroperoxides in dioxane see: Jacobson SE. Mares F. Zambri PM. J. Am. Chem. Soc.  1979,  101:  6938 
  • 40 Röder E. Krauß H. Liebigs Ann. Chem.  1992,  177 
  • 41 Heinrich MR. Blank O. Ullrich D. Kirschstein M.
    J. Org. Chem.  2007,  72:  9609 
  • 42 Elofson RM. Gadallah FF. J. Org. Chem.  1971,  36:  1769 
  • Two rare examples for the preparation of azo carboxylic acids have been reported by
  • 43a Fusco R. Romani R. Gazz. Chim. Ital.  1948,  78:  342 
  • 43b Khaimov IN. Trudy Tadzhik. Sel’skokhoz. Inst.  1958,  1:  33 
  • 45 The instability of related azo compounds to chromatography was also reported in: Baldwin JE. Adlington RM. Bottaro JC. Kolhe JN. Perry MWD. Jain AU. Tetrahedron  1986,  42:  4223 
  • 46 A mixture was obtained when using classical Beckmann conditions: Schäffler A. Ziegenbein W. Chem. Ber.  1955,  88:  1374 
  • 49 de Vleeschouwer F. van Speybroeck V. Waroquier M. Geerlings P. de Proft F. Org. Lett.  2007,  9:  2721 
  • 50a

    See ref. 25d.

  • 50b Haag BA. Zhang Z. Li J. Knochel P. Angew. Chem. Int. Ed.  2010,  49:  9513 
  • 50c Rossiter S. Folkes LK. Wardman P. Bioorg. Med. Chem. Lett.  2002,  12:  2523 
  • 51 For a formation of lactams from azo carboxylic esters, see: Baldwin JE. Adlington RM. Jain AU. Kolhe JN. Perry MWD. Tetrahedron  1986,  42:  4247 
  • 52a Molina CL. Chow CP. Shea KJ. J. Org. Chem.  2007,  72:  6816 
  • 52b Rautenstrauch V. Delay F. Angew. Chem. Int. Ed.  1980,  19:  726 
  • 52c Matsuyama H. Itoh N. Matsumoto A. Ohira N. Hara K. Yoshida M. Iyoda M. J. Chem. Soc., Perkin Trans. 1  2001,  2924 
  • 52d Fernández R. Ferrete A. Llera JM. Magriz A. Martín-Zamora E. Díez E. Lassaletta JM. Chem. Eur. J.  2004,  10:  737 
  • 52e Friestad GK. Qin J. J. Am. Chem. Soc.  2001,  123:  9922 
  • 54a Gruner M. Pfeifer D. Becker HGO. Radeglia R. Epperlein J. J. Prakt. Chem.  1985,  327:  63 
  • 54b Bahr JL. Yang J. Kosynkin DV. Bronikowski MJ. Smalley RE. Tour JM. J. Am. Chem. Soc.  2001,  123:  6536 
  • 55 Burnell DJ. Wu Y. Can. J. Chem.  1990,  68:  804 
  • 56 Haynes RK. King GR. Vonwiller SC. J. Org. Chem.  1994,  59:  4743 
  • 57a Golding BT. Bleasdale C. McGinnis J. Müller S. Rees HT. Rees NH. Farmer PB. Watson WP. Tetrahedron  1997,  53:  4063 
  • 57b Snyder JK. Stock LM. J. Org. Chem.  1980,  45:  886 
  • 58a Takemiya A. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  14800 
  • 58b Schmidt AM. Eilbracht P. Org. Biomol. Chem.  2005,  3:  2333 
  • 59 Bullock MW. Fox SW. J. Am. Chem. Soc.  1951,  73:  5155 
  • 60 Ramalingan C. Park Y.-T. Synthesis  2008,  1351 
28

For hydrogenolytic cleavage of N=N bonds, see ref. 25a and 25e.

39

For reports of varying yields of dodecanedioic acid dependent on the composition of peroxide, see ref. 33b and 37c.

44

After column chromatography on silica gel, a number of new compounds were detected that had not been present before. Several attempts including the variation of solvents and the use of deactivated silica gel were unsuccessful in preventing the partial decomposition of the azo carboxylic acids 9. Independent NMR experiments pointed to the formation of hydrazones as first intermediates of the decomposition pathway.

47

Better selectivities can be observed with the newly developed reagents, see refs. 8, 11, 12 and 13.

48

Exceptions are carboxylic acids 9ac, 9da, and 9ha, which were accompanied by hydrazones in the ratios 9/hydrazone 2:1, 3:1, and 2:1, respectively.

53

The literature procedure given in ref. 52d was slightly modified by refluxing the reaction mixture for 4 hours.