Abstract
The reductive ring-opening of hydroperoxides derived from cyclic
ketones leads to alkyl radicals which can effectively be trapped
by arenediazonium salts. This synthetic transformation yielding
azo carboxylic acids or lactams, after a reductive step, can be
classified as a radical version of the well-known Beckmann rearrangement.
In this article, we present results on the scope, the limitations
and possible applications of this new reaction type.
Key words
radical reaction - rearrangement - ketones - carboxylic acids - azo compounds
References
1
Metzger H.
Houben-Weyl
Vol. X/4:
Georg
Thieme Verlag;
Stuttgart:
1968.
p.1-308
2 For a first report, see: Beckmann E.
Ber. Dtsch. Chem. Ges.
1886,
19:
988
For review articles, see:
3a For a first report, see: Blatt AH.
Chem. Rev.
1933,
12:
215 ; and references cited therein
3b
Jones B.
Chem.
Rev.
1944,
35:
335
3c
Gawley RE.
Org. React.
1988,
35:
1
3d
Craig D.
Comprehensive Organic Synthesis
Vol.
7:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.689 ; and references cited therein
3e
Smith MB.
March J.
March’s Advanced Organic Chemistry
6th
ed.:
John Wiley & Sons;
Hoboken:
2007.
p.1613
4
Hendrickson JB.
Cram DJ.
Hammond GS.
Organic Chemistry
3rd
ed.:
McGraw-Hill;
Tokyo:
1970.
p.708
5 For the use of SOCl2 ,
see: Butler RN.
O’Donoghue DA.
J. Chem. Res., Synop.
1983,
18
6 For rearrangements of oxime p -toluenesulfonates using silica gel,
see: Costa A.
Mestres R.
Riego JM.
Synth. Commun.
1982,
12:
1003
7 For a report on the application of
MoO3 on silica gel, see: Dongare MK.
Bhagwat VV.
Ramana CV.
Gurjar MK.
Tetrahedron
Lett.
2004,
45:
4759
8 For the use of montmorillonite KSF,
see: Meshram HM.
Synth. Commun.
1990,
20:
3253
9 For RuCl3 -mediated Beckmann
rearrangements, see: De S K.
Synth.
Commun.
2004,
34:
3431
10 For Y(OTf)3 -mediated
Beckmann rearrangements, see: De S K.
Org.
Prep. Proced. Int.
2004,
36:
383
11 For BiCl3 -mediated Beckmann
rearrangements, see: Thakur AJ.
Boruah A.
Prajapati D.
Sandhu JS.
Synth. Commun.
2000,
30:
2105
12 For the use of 2,4,6-trichloro-1,3,5-triazine,
see: Luca LD.
Giacomelli G.
Porcheddu A.
J. Org.
Chem.
2002,
67:
6272
13 For Ga(OTf)3 -mediated
Beckmann rearrangements, see: Yan P.
Batamack P.
Prakash GKS.
Olah GA.
Catal. Lett.
2005,
103:
165
For the use of rare earth exchanged
zeolites, see:
14a
Thomas B.
Prathapan S.
Sugunan S.
Microporous Mesoporous
Mater.
2005,
84:
137
14b
Thomas B.
Sugunan S.
Microporous Mesoporous Mater.
2006,
96:
55
15a
Zhang Z.
Li J.
Yang X.
Catal. Lett.
2007,
118:
300
15b
Li Z.
Lu Z.
Ding R.
Yang J.
J. Chem. Res.
2006,
668
15c
Priya SV.
Mabel JH.
Palanichamy M.
Murugesan V.
Stud.
Surf. Sci. Catal.
2008,
174:
1147
For Beckmann rearrangements in
the vapor phase, see:
16a
Maheswari R.
Shanthi K.
Sivakumar T.
Narayanan S.
Appl. Catal., A
2003,
248(1-2):
291
16b
Mao D.
Chen Q.
Lu G.
Appl.
Catal., A
2003,
244(2):
273
16c
Izumi Y.
Ichihashi H.
Shimazu Y.
Kitamura M.
Sato H.
Bull. Chem.
Soc. Jpn.
2007,
80:
1280
For Beckmann rearrangements in
supercritical water, see:
17a
Ikushima Y.
Hatakeda K.
Sato O.
Yokoyama T.
Arai M.
J.
Am. Chem. Soc.
2000,
122:
1908
17b
Boero M.
Ikeshoji T.
Liew CC.
Terakura K.
Parrinello M.
J.
Am. Chem. Soc.
2004,
126:
6280
For Beckmann rearrangements in
ionic liquids, see:
18a
Peng J.
Deng Y.
Tetrahedron Lett.
2001,
42:
403
18b
Ren RX.
Zueva LD.
Ou W.
Tetrahedron Lett.
2001,
42:
8441
18c
Lee JK.
Kim D.
Song CE.
Lee S.
Synth. Commun.
2003,
33:
2301
19 For a review on nitrogen-centered
radical scavengers, see: Höfling S.
Heinrich MR.
Synthesis
2011,
173
For sulfonyl azides as N-centered
radical scavengers, see:
20a
Renaud P.
Ollivier C.
J. Am. Chem. Soc.
2000,
122:
6496
20b
Renaud P.
Panchaud P.
Chabaud L.
Landais Y.
Ollivier C.
Zigmantas S.
Chem. Eur. J.
2004,
10:
3606
20c
Renaud P.
Kapat A.
Nyfeler E.
Giuffredi GT.
J. Am. Chem. Soc.
2009,
131:
17746
For nitroso compounds as N-centered
radical scavengers, see:
21a
Girard P.
Guillot N.
Motherwell WB.
Potier P.
J. Chem. Soc., Chem. Commun.
1995,
2385
21b
Girard P.
Guillot N.
Motherwell WB.
Hay-Motherwell RS.
Potier P.
Tetrahedron
1999,
55:
3573
For imines as N-centered radical
scavengers, see:
22a
Ryu I.
Matsu K.
Minakata S.
Komatsu M.
J. Am. Chem. Soc.
1998,
120:
5838
22b
Lamas C.-M.
Vaillard SE.
Wibbeling B.
Studer A.
Org. Lett.
2010,
12:
2072
For azo compounds as N-centered
radical scavengers, see:
23a
Alberti A.
Bedogni N.
Benaglia M.
Leardini R.
Nanni D.
Pedulli GF.
Tundo A.
Zanardi G.
J. Org. Chem.
1992,
57:
607
23b
Baigrie BD.
Cadogan JIG.
Sharp JT.
J. Chem. Soc., Perkin
Trans. 1
1975,
1029
For diazirines as N-centered radical
scavengers, see:
24a
Barton DHR.
Jaszberenyi JC.
Theodorakis EA.
J. Am. Chem.
Soc.
1992,
114:
5904
24b
Barton DHR.
Jaszberenyi JS.
Theodorakis EA.
Reibenspies JH.
J. Am. Chem. Soc.
1993,
115:
8050
For recent reports on arenediazonium
salts as radical scavengers, see:
25a
Heinrich MR.
Blank O.
Wölfel S.
Org. Lett.
2006,
8:
3323
25b
Blank O.
Heinrich MR.
Eur. J. Org. Chem.
2006,
4331
25c
Heinrich MR.
Blank O.
Wetzel A.
Synlett
2006,
3352
25d
Heinrich MR.
Blank O.
Wetzel A.
J.
Org. Chem.
2007,
72:
476
25e
Blank O.
Wetzel A.
Ullrich D.
Heinrich MR.
Eur. J. Org. Chem.
2008,
3179
26
Criegee R.
Houben-Weyl
Vol.
VIII:
Georg Thieme Verlag;
Stuttgart:
1968.
p.1-74
For radical reactions employing
hydroperoxides (as radical sources) in combination with arenediazonium
salts (as radical scavengers), see:
27a
Citterio A.
Minisci F.
J. Org. Chem.
1982,
47:
1759
27b
Blank O.
Raschke N.
Heinrich MR.
Tetrahedron
Lett.
2010,
51:
1758
28 For hydrogenolytic cleavage of N=N
bonds, see ref. 25a and 25e.
For the iron(II) or copper(I)-mediated
cleavage of (hydro-)peroxides, see:
29a
Walling C.
Zavitsas AA.
J. Am.
Chem. Soc.
1963,
85:
2084
29b
Walling C.
Acc. Chem.
Res.
1975,
8:
125
29c
Schreiber SL.
J. Am. Chem. Soc.
1980,
102:
6163
29d
Schreiber SL.
Hulin B.
Liew W.-F.
Tetrahedron
1986,
42:
2945
For review articles on oxygen-centered
radicals, see:
30a
Suárez E.
Rodriguez MS. In Radicals in Organic Synthesis
1st
ed., Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.440
30b
Hartung J.
Gottwald T.
Spehar K.
Synthesis
2002,
1469
31a
Francisco CG.
González CC.
Kennedy AR.
Paz NR.
Suárez E.
Chem.
Eur. J.
2008,
14:
6704
31b
Alonso-Cruz CR.
Kennedy AR.
Rodriguez MS.
Suárez E.
Tetrahedron
Lett.
2007,
48:
7207
31c
Dichtl A.
Seyfried M.
Schoening K.-U.
Synlett
2008,
1877
For review articles on arenediazonium
salts as sources for aryl radicals, see:
32a
Galli C.
Chem.
Rev.
1988,
88:
765
32b
Heinrich MR.
Chem. Eur. J.
2009,
15:
820
For the formation of diversely
substituted carboxylic and dicarboxylic acids from cyclic hydroperoxides
upon reduction, see:
33a
Cooper W.
Davison WHT.
J. Chem. Soc.
1952,
1180
33b
Hawkins EGE.
J. Chem. Soc.
1955,
3463
33c
Kharasch MS.
Nudenberg W.
J. Org.
Chem.
1954,
19:
1921
33d
Braunwarth JB.
Crosby GW.
J.
Org. Chem.
1962,
27:
2064
33e
De La Mare HE.
Kochi JK.
Rust FF.
J. Am. Chem. Soc.
1963,
85:
1437
For recent reports on bond strengths
and radical stability, see:
34a
Zipse H.
Top.
Curr. Chem.
2006,
263:
163
34b
Zavitsas A.
J.
Org. Chem.
2008,
73:
9022
35 For an example of a temperature-dependent
ring-opening reaction, see: Beckwith ALJ.
Kazlauskas R.
Syner-Lyons MR.
J. Org. Chem.
1983,
48:
4718
36 For a computational study on the
regioselectivity of alkoxy radical fragmentation, see: Wilsey S.
Dowd P.
Houk KN.
J. Org. Chem.
1999,
64:
8801
For syntheses of hydroperoxides
from cyclic ketones and studies on their structure see
37a
Milas NA.
Harris SA.
Panagiotakos PC.
J. Am. Chem. Soc.
1939,
61:
2430
37b
Criegee R.
Schnorrenberg W.
Becke J.
Justus
Liebigs Ann. Chem.
1949,
565:
7
37c
Karasch MS.
Sosnovsky G.
J. Org.
Chem.
1958,
23:
1322
37d
Brown N.
Hartig MJ.
Roedel MJ.
Anderson AW.
Schweitzer CE.
J. Am. Chem. Soc.
1955,
77:
1756
38 For a study on equilibrium data
for the formation of cyclic hydroperoxides in dioxane see: Jacobson SE.
Mares F.
Zambri PM.
J. Am. Chem. Soc.
1979,
101:
6938
39 For reports of varying yields of dodecanedioic
acid dependent on the composition of peroxide, see ref. 33b and 37c.
40
Röder E.
Krauß H.
Liebigs Ann. Chem.
1992,
177
41
Heinrich MR.
Blank O.
Ullrich D.
Kirschstein M.
J. Org. Chem.
2007,
72:
9609
42
Elofson RM.
Gadallah FF.
J. Org. Chem.
1971,
36:
1769
Two rare examples for the preparation
of azo carboxylic acids have been reported by
43a
Fusco R.
Romani R.
Gazz. Chim. Ital.
1948,
78:
342
43b
Khaimov IN.
Trudy Tadzhik. Sel’skokhoz. Inst.
1958,
1:
33
44 After column chromatography on silica
gel, a number of new compounds were detected that had not been present
before. Several attempts including the variation of solvents and
the use of deactivated silica gel were unsuccessful in preventing the
partial decomposition of the azo carboxylic acids 9 . Independent NMR experiments pointed to the formation of hydrazones
as first intermediates of the decomposition pathway.
45 The instability of related azo compounds
to chromatography was also reported in: Baldwin JE.
Adlington RM.
Bottaro JC.
Kolhe JN.
Perry MWD.
Jain AU.
Tetrahedron
1986,
42:
4223
46 A mixture was obtained when using
classical Beckmann conditions: Schäffler A.
Ziegenbein W.
Chem. Ber.
1955,
88:
1374
47 Better selectivities can be observed
with the newly developed reagents, see refs. 8, 11, 12 and 13.
48 Exceptions are carboxylic acids 9ac , 9da , and 9ha , which were accompanied by hydrazones
in the ratios 9 /hydrazone 2:1,
3:1, and 2:1, respectively.
49
de Vleeschouwer F.
van Speybroeck V.
Waroquier M.
Geerlings P.
de Proft F.
Org. Lett.
2007,
9:
2721
50a See
ref. 25d.
50b
Haag BA.
Zhang Z.
Li J.
Knochel P.
Angew. Chem. Int. Ed.
2010,
49:
9513
50c
Rossiter S.
Folkes LK.
Wardman P.
Bioorg.
Med. Chem. Lett.
2002,
12:
2523
51 For a formation of lactams from
azo carboxylic esters, see: Baldwin JE.
Adlington RM.
Jain AU.
Kolhe JN.
Perry MWD.
Tetrahedron
1986,
42:
4247
52a
Molina CL.
Chow CP.
Shea KJ.
J. Org. Chem.
2007,
72:
6816
52b
Rautenstrauch V.
Delay F.
Angew. Chem.
Int. Ed.
1980,
19:
726
52c
Matsuyama H.
Itoh N.
Matsumoto A.
Ohira N.
Hara K.
Yoshida M.
Iyoda M.
J. Chem. Soc.,
Perkin Trans. 1
2001,
2924
52d
Fernández R.
Ferrete A.
Llera JM.
Magriz A.
Martín-Zamora E.
Díez E.
Lassaletta JM.
Chem. Eur. J.
2004,
10:
737
52e
Friestad GK.
Qin J.
J. Am. Chem.
Soc.
2001,
123:
9922
53 The literature procedure given in
ref. 52d was slightly modified by refluxing the reaction mixture
for 4 hours.
54a
Gruner M.
Pfeifer D.
Becker HGO.
Radeglia R.
Epperlein J.
J. Prakt.
Chem.
1985,
327:
63
54b
Bahr JL.
Yang J.
Kosynkin DV.
Bronikowski MJ.
Smalley RE.
Tour JM.
J. Am. Chem. Soc.
2001,
123:
6536
55
Burnell DJ.
Wu Y.
Can. J. Chem.
1990,
68:
804
56
Haynes RK.
King GR.
Vonwiller SC.
J. Org. Chem.
1994,
59:
4743
57a
Golding BT.
Bleasdale C.
McGinnis J.
Müller S.
Rees HT.
Rees NH.
Farmer PB.
Watson WP.
Tetrahedron
1997,
53:
4063
57b
Snyder JK.
Stock LM.
J.
Org. Chem.
1980,
45:
886
58a
Takemiya A.
Hartwig JF.
J.
Am. Chem. Soc.
2006,
128:
14800
58b
Schmidt AM.
Eilbracht P.
Org. Biomol. Chem.
2005,
3:
2333
59
Bullock MW.
Fox SW.
J. Am. Chem. Soc.
1951,
73:
5155
60
Ramalingan C.
Park Y.-T.
Synthesis
2008,
1351