RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260328
Synthesis of N-Alkoxyindol-2-ones by Copper-Catalyzed Intramolecular N-Arylation of Hydroxamates
Publikationsverlauf
Publikationsdatum:
22. September 2011 (online)
Abstract
The first example of copper-catalyzed intramolecular N-arylation of hydroxamic acid derivatives is presented. Based on this transformation a new method for the synthesis of N-alkoxyindol-2-ones from 2-(2-bromoaryl)acetylhydroxamates has been developed. The reaction conditions tolerate standard hydroxyl protecting groups on the hydroxylamine moiety and are also applicable for the synthesis of six-membered N-alkoxybenzolactams.
Key words
copper - arylation - cyclization - lactams - hydoxamic acids
- Supporting Information for this article is available online:
- Supporting Information
- 1
Henmi T.Sakamoto T.Kikugawa Y. Heterocycles 1997, 44: 157 - 2
Kikugawa Y.Shimada M.Matsumoto K. Heterocycles 1994, 37: 293 - 3
Pedras MSC.Chumala PB.Suchy M. Phytochemistry 2003, 64: 949 - 4
Kitajima M.Nakamura T.Kogure N.Ogawa M.Mitsuno Y.Ono K.Yano S.Aimi N.Takayama H.
J. Nat. Prod. 2006, 69: 715 -
5a
Kato H.Yoshida T.Tokue T.Nojiri Y.Hirota H.Ohta T.Williams RM.Tsukamoto S. Angew. Chem. Int. Ed. 2007, 46: 2254 -
5b
Tsukamoto S.Kato H.Samizo M.Nojiri Y.Onuki H.Hirota H.Ohta T. J. Nat. Prod. 2008, 71: 2064 -
6a
Bouerat L.Fensholdt J.Liang X.Havez S.Nielsen SF.Hansen JR.Bolvig S.Andersson C. J. Med. Chem. 2005, 48: 5412 -
6b
Bouerat LME,Fensholdt J,Nielsen SF,Liang X,Havez SE,Andersson EC,Jensen L, andHansen JR. inventors; WO 2005058309. ; Chem. Abstr. 2005, 143, 97259 - 7
Parkes KEB.Ermert P.Fässler J.Ives J.Martin JA.Merrett JH.Obrecht D.Williams G.Klumpp K.
J. Med. Chem. 2003, 46: 1153 - 8
El-Faham A.Albericio F. Eur. J. Org. Chem. 2009, 1499 -
9a
Di Carlo FJ. J. Am. Chem. Soc. 1944, 66: 1420 -
9b
Wright WB.Collins KH. J. Am. Chem. Soc. 1956, 78: 221 -
9c
Somei M.Sato H.Kaneko C. Heterocycles 1983, 20: 1797 -
9d
Kende AS.Thurston J. Synth. Commun. 1990, 20: 2133 - 10
Neset SM.Benneche T.Undheim K. Acta Chem. Scand. 1993, 47: 1141 -
11a
Kikugawa Y.Kawase M. J. Am. Chem. Soc. 1984, 106: 5728 -
11b
Kawase M.Kitamura T.Kikugawa Y. J. Org. Chem. 1989, 54: 3394 -
11c
Kikugawa Y.Shimada M. Chem. Lett. 1987, 1771 -
11d For a review, see:
Kikugawa Y. Heterocycles 2009, 78: 571 - For reviews on copper-catalyzed cross-couplings, see:
-
12a
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
12b
Beletskaya IP.Cheprakov AV. Coord. Chem. Rev. 2004, 248: 2337 -
12c
Evano G.Blanchard N.Toumi M. Chem. Rev. 2008, 108: 3054 - For selected reviews on palladium-catalyzed cross-couplings, see:
-
12d
Schlummer B.Scholz U. Adv. Synth. Catal. 2004, 346: 1599 -
12e
Surry DS.Buchwald SL. Angew. Chem. Int. Ed. 2008, 47: 6338 -
12f
Surry DS.Buchwald SL. Chem. Sci. 2011, 2: 27 - 13
Wasa M.Yu J.-Q. J. Am. Chem. Soc. 2008, 130: 14058 - 14
Jones KL.Porzelle A.Hall A.Woodrow MD.Tomkinson NCO. Org. Lett. 2008, 10: 797 - 15
Porzelle A.Woodrow MD.Tomkinson NCO. Org. Lett. 2009, 11: 233 - 16
Xing X.Wu J.Luo J.Dai W.-M. Synlett 2006, 2099 - 17
van den Hoogenband A.den Hartog JAJ.Lange JHM.Terpstra JW. Tetrahedron Lett. 2004, 45: 8535 - 18
Yang BH.Buchwald SL. Org. Lett. 1999, 1: 35 - 19
Klapars A.Huang X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 7421 - For reports of the benefit of molecular sieves in the copper-catalyzed cross-coupling reaction, see:
-
20a
Cristau H.-J.Cellier PP.Spindler J.-F.Taillefer M. Chem. Eur. J. 2004, 10: 5607 -
20b
Shen Y.Li M.Wang S.Zhan T.Tan Z.Guo C.-C. Chem. Commun. 2009, 953 -
20c
Yao B.Zhang Y.Li Y. J. Org. Chem. 2010, 75: 4554 -
21a
Ma D.Cai Q.Zhang H. Org. Lett. 2003, 5: 2453 -
21b
Zhang H.Cai Q.Ma D. J. Org. Chem. 2005, 70: 5164 - 22
Hosseinzadeh R.Tajbakhsh M.Mohadjerani M.Mehdinejad H. Synlett 2004, 1517 -
23a
Altman RA.Buchwald SL. Org.Lett. 2007, 9: 643 -
23b
de Lange B.Lambers-Verstappen MH.Schmieder-van de Vondervoot L.Sereinig N.de Rijk R.de Vries AHM.de Vries JG. Synlett 2006, 3105 - 24
Shafir A.Buchwald SL. J. Am. Chem. Soc. 2006, 128: 8742 - For recent examples where the hydoxamate N-O moiety serves as an internal oxidant, see:
-
29a
Guimond N.Gouliaras C.Fagnou K. J. Am. Chem. Soc. 2010, 132: 6908 -
29b
Patureau FW.Glorius F. Angew. Chem. Int. Ed. 2011, 50: 1977 - 30 For a review on oxidative homocoupling
reactions, see:
Klussmann M.Sureshkumar D. Synthesis 2011, 353
References and Notes
General Procedure
To
an oven-dried vial equipped with a stirrer bar, hydroxamate (1.0
equiv, 0.2 mmol), copper(II) bromide (10 mol%), K2CO3 (2.0
equiv, 0.4 mmol) and 3 Å MS (100 wt%) were added.
The vial was closed using an aluminium open-top seal with PTFE-faced
septum, flushed with argon before addition of dry toluene (2 mL)
and DMEDA (20 mol%) and stirred at the appropriate temperature
for the appropriate time (Table
[¹]
).
After cooling the reaction mixture was diluted with EtOAc (5 mL)
then filtered through a short silica plug and washed with EtOAc.
The solvent was removed in vacuo, and the crude product was purified
by flash column chromatography on silica gel eluting with EtOAc-hexane
(1:5) to give the product.
Compound 2a was obtained in 61% yield from iodo hydroxamate 1b if K3PO4 was used as base. For a report of the advantage of K3PO4 as compared to K2CO3 in copper-catalyzed amidation of aryliodides, see ref. 19.
27Product 2a from chloro hydroxamate 1c was obtained in 43% yield if reaction was carried out for 1 h in MeCN at sample concentration 0.2 mmol/mL.
28Crystallographic data for 3 have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-827122, and may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CD2 1EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk.