Subscribe to RSS
DOI: 10.1055/s-0030-1260545
Metal-Free Chiral Phosphoric Acid or Chiral Metal Phosphate as Active Catalyst in the Activation of N-Acyl Aldimines
Publication History
Publication Date:
29 April 2011 (online)

Abstract
Whether metal-free chiral phosphoric acid or chiral metal phosphate functions as an active catalyst was confirmed in three reactions. In the aza-Friedel-Crafts and aza-ene-type reactions, a metal-free chiral phosphoric acid, namely, a chiral Brønsted acid, was verified to be the active catalyst. In contrast, the substitution reaction of α-diazoacetate with aldimine was accelerated by a salt-containing chiral phosphoric acid and hence chiral metal phosphate presumably functioned as an active catalyst.
Key words
asymmetric catalysis - enantioselectivity - Friedel-Crafts reaction - organocatalysis - substitution
- For reviews, see:
-
1a
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
1b
Akiyama T. Chem. Rev. 2007, 107: 5744 -
1c
Yu X.Wang W. Chem. Asian J. 2008, 3: 516 -
1d
Yamamoto H.Payette N. In Hydrogen Bonding in Organic SynthesisPihko PM. Wiley-VCH; Weinheim: 2009. p.73-140 -
1e
Kampen D.Reisinger CM.List B. Top. Curr. Chem. 2010, 291: 395 - For seminal studies, see:
-
2a
Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 -
2b
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 -
3a
Nakashima D.Yamamoto H. J. Am. Chem. Soc. 2006, 128: 9626 - For a review, see:
-
3b
Cheon CH.Yamamoto H. Chem. Commun. 2011, 47: 3043 - For reviews, see:
-
4a
Connon SJ. Angew. Chem. Int. Ed. 2006, 45: 3909 -
4b
Akiyama T.Itoh J.Fuchibe K. Adv. Synth. Catal. 2006, 348: 999 -
4c
Adair G.Mukherjee S.List B. Aldrichimica Acta 2008, 41: 31 -
4d
Terada M. Chem. Commun. 2008, 4097 -
4e
Terada M. Bull. Chem. Soc. Jpn. 2010, 83: 101 -
4f
Terada M. Synthesis 2010, 1929 -
4g
Zamfir A.Schenker S.Freund M.Tsogoeva SB. Org. Biomol. Chem. 2010, 8: 5262 - 5
Xu S.Wang Z.Zhang X.Zhang X.Ding K. Angew. Chem. Int. Ed. 2008, 47: 2840 -
6a
Rueping M.Theissmann T.Kuenkel A.Koenigs RM. Angew. Chem. Int. Ed. 2008, 47: 6798 -
6b
Rueping M.Nachtsheim BJ.Koenigs RM.Ieawsuwan W. Chem. Eur. J. 2010, 16: 13116 - 7
Terada M.Sorimachi K. J. Am. Chem. Soc. 2007, 129: 292 - Ishihara and co-workers reported that the outcome of the Mannich reaction of N-Boc aldimine 6 with acetylacetone catalyzed by chiral calcium phosphate [G = 4-(β-naphthyl) phenyl] was comparable to our reported result (see ref. 2b) obtained using silica gel purified chiral phosphoric acid (G = same as above), see:
-
9a
Hatano M.Moriyama K.Maki T.Ishihara K. Angew. Chem. Int. Ed. 2010, 49: 3823 - Also see:
-
9b
Hatano M.Ishihara K. Synthesis 2010, 3785 - List and co-workers compared the catalytic activities of metal-free and silica gel purified, i.e., salt-containing phosphoric acids 1a in an asymmetric transfer hydro-genation of imine. They reported that both acids yielded the corresponding products with the same enantioselectivity. However, the metal-free acid displayed significantly higher catalytic activity than the salt-containing acid, see:
-
10a
Klussmann M.Ratjen L.Hoffmann S.Wakchaure V.Goddard R.List B. Synlett 2010, 2189 - Also see:
-
10b
Lu G.Birman VB. Org. Lett. 2011, 13: 356 - Selected examples of binaphthol-derived monophosphoric acids as the chiral ligand for enantioselective catalysis. For palladium catalysts, see:
-
11a
Alper H.Hamel N. J. Am. Chem. Soc. 1990, 112: 2803 - For rhodium catalysts, see:
-
11b
McCarthy N.McKervey MA.Ye T.McCann M.Murphy E.Doyle MP. Tetrahedron Lett. 1992, 33: 5983 -
11c
Pirrung MC.Zhang J. Tetrahedron Lett. 1992, 33: 5987 - For gold catalysts, see:
-
11d
Hamilton GL.Kang EJ.Mba M.Toste FD. Science 2007, 317: 496 -
11e
LaLonde RL.Wang ZJ.Mba M.Lackner AD.Toste FD. Angew. Chem. Int. Ed. 2010, 49: 598 - For copper catalysts, see:
-
11f
Zhao B.Du H.Shi Y. J. Org. Chem. 2009, 74: 8392 - For silver catalysts, see:
-
11g
Zhang Q.-W.Fan C.-A.Zhang H.-J.Tu Y.-Q.Zhao Y.-M.Gu P.Chen Z.-M. Angew. Chem. Int. Ed. 2009, 48: 8572 - For iron catalysts, see:
-
11h
Yang L.Zhu Q.Guo S.Qian B.Xia C.Huang H. Chem. Eur. J. 2010, 16: 1638 - For rare-earth metal catalysts, see:
-
11i
Inanaga J.Sugimoto Y.Hanamoto T. New J. Chem. 1995, 19: 707 -
11j
Furuno H.Hanamoto T.Sugimoto Y.Inanaga J. Org. Lett. 2000, 2: 49 -
11k
Sugihara H.Daikai K.Jin XL.Furuno H.Inanaga J. Tetrahedron Lett. 2002, 43: 2735 -
11l
Jin XL.Sugihara H.Daikai K.Tateishi H.Jin YZ.Furuno H.Inanaga J. Tetrahedron 2002, 58: 8321 -
11m
Furuno H.Kambara T.Tanaka Y.Hanamoto T.Kagawa T.Inanaga J. Tetrahedron Lett. 2003, 44: 6129 -
11n
Furuno H.Hayano T.Kambara T.Sugimoto Y.Hanamoto T.Tanaka Y.Jin YZ.Kagawa T.Inanaga J. Tetrahedron 2003, 59: 10509 -
11o
Suzuki S.Furuno H.Yokoyama Y.Inanaga J. Tetrahedron: Asymmetry 2006, 17: 504 - For aluminum catalysts, see:
-
11p
Yue T.Wang M.-X.Wang D.-X.Masson G.Zhu J. J. Org. Chem. 2009, 74: 8396 - For a combination of chiral phosphoric acid and magnesium salt as a binary catalytic system, see:
-
11q
Lv J.Li X.Zhong L.Luo S.Cheng J.-P. Org. Lett. 2010, 12: 1096 - After the report by Ishihara and co-workers, the enantioselective catalysis by chiral calcium phosphate was developed by three research groups, see:
-
12a
Drouet F.Lalli C.Liu H.Masson G.Zhu J. Org. Lett. 2011, 13: 94 -
12b
Zhang Z.Zheng W.Antilla JC. Angew. Chem. Int. Ed. 2011, 50: 1135 -
12c
Rueping M.Bootwicha T.Sugiono E. Synlett 2011, 323 - Also see chiral sodium phosphate:
-
12d
Hennecke U.Müller CH.Fröhlich R. Org. Lett. 2011, 13: 860 - In the reaction of trimethylsilyl cyanide, the formation of hypervalent silicate might be responsible for the acceleration of the reactions, see:
-
13a
Hatano M.Ikeno T.Matsumura T.Torii S.Ishihara K. Adv. Synth. Catal. 2008, 350: 1776 -
13b
Shen K.Liu X.Cai Y.Lin L.Feng X. Chem. Eur. J. 2009, 15: 6008 - 15
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2004, 126: 11804 - 16
Uraguchi D.Sorimachi K.Terada M. J. Am. Chem. Soc. 2005, 127: 9360 - 17
Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2006, 45: 2254 - For the enantioselective substitution reaction of α-diazo-acetates with aldimines catalyzed by chiral Brønsted acids, see:
-
20a
Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2007, 129: 10054 -
20b
Hashimoto T.Maruoka K. Synthesis 2008, 3703 - For the enantioselective aziridine formation (aza-Darzens) reaction of α-diazoacetates with aldimines catalyzed by chiral Brønsted acids, see:
-
21a
Hashimoto T.Uchiyama N.Maruoka K. J. Am. Chem. Soc. 2008, 130: 14380 -
21b
Akiyama T.Suzuki T.Mori K. Org. Lett. 2009, 11: 2445 -
21c
Zeng X.Zeng X.Xu Z.Lu M.Zhong G. Org. Lett. 2009, 11: 3036
References and Notes
Sorimachi, K.; Terada, M. unpublished results.
14List and co-workers reported that silica gel purified chiral phosphoric acid 1a contained substantial amounts of alkali and alkaline-earth metals along with several metal impurities as ascertained by ICP-OES elemental analysis. See ref. 10a.
18
For the Preparation
of Acid-Washed 1b (Method A)
Silica gel purified 1b was dissolved in Et2O. The
resultant solution was washed with HCl aq solution (2 M) in a separatory
funnel. The resultant ether layer was dried over Na2SO4 and
evaporated to remove organic solvents. The resultant residue was
dried under reduced pressure for more than 12 h to eliminate organic
solvents completely.
For the Preparation
of Acid-Washed 1c (Method A)
Silica gel purified 1c was dissolved in MeOH. Then HCl aq solution
(2 M) was added to the resultant MeOH solution to give a white suspension.
The resultant suspension was extracted with CH2Cl2 (twice
or more), and the combined organic layer was dried over Na2SO4.
This was followed by the procedure as shown in the preparation of
acid-washed 1b (method A).
Extra pure silica gel (Silica gel 60 extra pure for column chromatography: Catalogue No. 1.07754) was purchased from Merck KgaA. Short-path column chromatography was performed using CH2Cl2-MeOH (10:1) mixtures as eluent.
22A silica gel purified chiral phosphoric acid contains considerable amounts of alkali and alkaline-earth metals with other metal impurities. Therefore it should be considered that a problem of reproducibility in yield and selectivity would happen, because the composition of metals is dependent on the conditions of silica gel column chromatography conducted.