Subscribe to RSS
DOI: 10.1055/s-0030-1260573
An Integrated Flow and Batch-Based Approach for the Synthesis of O-Methyl Siphonazole
Publication History
Publication Date:
23 May 2011 (online)
Abstract
The bisoxazole containing natural product O-methyl siphonazole was assembled using a suite of microreactors via a flow-based approach in concert with traditional batch methods. The use of a toolbox of solid-supported scavengers and reagents to aid purification afforded the natural product in a total of nine steps.
Key words
oxazoles - Claisen condensation - flow chemistry - microreactors - solid-supported reagents
-
1a
Bull JA.Balskus EP.Horan RAJ.Langner M.Ley SV. Angew. Chem. Int. Ed. 2006, 45: 6714 -
1b
Bull JA.Balskus EP.Horan RAJ.Langner M.Ley SV. Chem. Eur. J. 2007, 13: 5515 -
1c
Enriquez-Garcia A.Ley SV. Collect. Czech. Chem. Commun. 2009, 74: 887 - 2
Nett M.Erol .Kehraus S.Köck M.Krick A.Eguevera E.Neu E.König GM. Angew. Chem. Int. Ed. 2006, 45: 3863 -
3a
Linder J.Moody CJ. Chem. Commun. 2007, 1508 -
3b
Linder J.Blake AJ.Moody CJ. Org. Biomol. Chem. 2008, 6: 3908 -
4a
Zhang J.Ciufolini MA. Org. Lett. 2009, 11: 2389 -
4b
Zhang J.Polishchuk EA.Chen J.Ciufolini MA. J. Org. Chem. 2009, 74: 9140 -
5a
Noël T.Naber JR.Hartman RL.McMullen JP.Jensen KF.Buchwald SL. Chem. Sci. 2011, 2: 287 -
5b
Ceylan S.Coutable L.Wegner J.Kirschning A. Chem. Eur. J. 2011, 17: 1884 -
5c
Polyzos T.O’Brien M.Petersen TP.Baxendale IR.Ley SV. Angew. Chem. Int. Ed. 2011, 50: 1190 -
5d
Ngamsom B.Hickey AM.Greenway GM.Littlechild JA.McCreedy T.Watts P.Wiles C. Org. Biomol. Chem. 2010, 8: 2419 -
5e
Bagley MC.Fusillo V.Jenkins RL.Lubinu MC.Mason C. Org. Biomol. Chem. 2010, 8: 2245 -
5f
Wegner J.Ceylan S.Friese C.Kirschning A. Eur. J. Org. Chem. 2010, 4372 -
5g
McMullen JP.Stone MT.Buchwald SL.Jensen KF. Angew. Chem. Int. Ed. 2010, 49: 7076 -
5h
McMullen JP.Jensen KF. Org. Process Res. Dev. 2010, 14: 1169 -
5i
Damm M.Glasnov TN.Kappe CO. Org. Process Res. Dev. 2010, 14: 215 -
5j
Riva E.Gagliardi S.Martinelli M.Passarella D.Vigo D.Rencurosi A. Tetrahedron 2010, 66: 3242 -
5k
Amemiya F.Fuse K.Fuchigami T.Atobe M. Chem. Commun. 2010, 46: 2730 -
5l
Brandt JC.Elmore SC.Robinson RI.Wirth T. Synlett 2010, 3099 -
5m
Nagaki A.Takabayasi N.Tomida Y.Yoshida J. Beilstein J. Org. Chem. 2009, 5: No. 16 -
5n
Gustafsson T.Pontén F.Seeberger PH. Chem. Commun. 2008, 26: 1100 -
5o
Sahoo HR.Kralji JG.Jensen KF. Angew. Chem. Int. Ed. 2007, 46: 5704 -
5p
Mason BP.Price KE.Steinbacher JL.Bogdan AR.MacQuade DT. Chem. Rev. 2007, 107: 2300 -
6a
Baumann M.Baxendale IR.Ley SV. Mol. Diversity 2011, in press; DOI: 10.1007/s11030-010-9282-1 -
6b
Bogdan AR.James K. Chem. Eur. J. 2010, 16: 14506 -
6c
Hessel V. Chem. Eng. Technol. 2009, 32: 1655 -
6d
Ley SV.Baxendale IR. Chimia 2008, 62: 162 -
7a
Irfan M.Glasnov TN.Kappe CO. Org. Lett. 2011, 13: 984 -
7b
Martin LJ.Marzinzik AL.Ley SV.Baxendale IR. Org. Lett. 2011, 13: 320 -
7c
Smith CJ.Nikbin N.Ley SV.Lange H.Baxendale IR. Org. Biomol. Chem. 2011, 9: 1938 -
7d
Malet-Sanz L.Madrzak J.Ley SV.Baxendale IR. Org. Biomol. Chem. 2010, 8: 5324 -
7e
McPake CB.Murray CB.Sandford G. Chimica oggi 2010, 26: 6 -
7f
O’Brien M.Baxendale IR.Ley SV. Org. Lett. 2010, 12: 1596 -
7g
Bartrum HE.Blakemore DC.Moody CJ.Hayes CJ. J. Org. Chem. 2010, 75: 8674 -
7h
Brandt JC.Wirth T. Beilstein J. Org. Chem. 2009, 5: No. 30 -
7i
Bogdan AR.Sach NW. Adv. Synth. Catal. 2009, 351: 849 -
7j
Baumann M.Baxendale IR.Nikbin N.Ley SV.Smith CD.Tierney JP. Org. Biomol. Chem. 2008, 6: 1577 -
7k
Wiles C.Watts P. Eur. J. Org. Chem. 2008, 5597 -
7l
Sandford G. J. Fluorine Chem. 2007, 128: 90 -
8a
Hodgkinson JT.Galloway WRJD.Shreya S.Baxendale IR.Ley SV.Ladlow M.Welch M.Spring DR. Org. Biomol. Chem. 2011, 9: 57 -
8b
Carter CF.Baxendale IR.Pavey JBJ.Ley SV. Org. Biomol. Chem. 2010, 8: 1588 -
8c
Wheeler RC.Benali O.Deal M.Farrant E.MacDonald SJF.Warrington BH. Org. Process Res. Dev. 2007, 11: 704 -
8d
Hornung CH.Mackley MR.Baxendale IR.Ley SV. Org. Process Res. Dev. 2007, 11: 399 -
8e
Smith CJ.Iglesias-Sigüenza FJ.Baxendale IR.Ley SV. Org. Biomol. Chem. 2007, 5: 2758 -
8f
Roberge DM.Ducry L.Bieler N.Cretton P.Zimmermann B. Chem. Eng. Technol. 2005, 28: 318 -
9a
Rasheed M.Wirth T. Angew. Chem. Int. Ed. 2011, 50: 357 -
9b
Smith CJ.Smith CD.Nikbin N.Ley SV.Baxendale IR. Org. Biomol. Chem. 2011, 9: 1927 -
9c
Venturoni F.Nikbin N.Ley SV.Baxendale IR. Org. Biomol. Chem. 2010, 8: 1798 -
9d
Baxendale IR.Griffiths-Jones CM.Ley SV.Tranmer GK. Synlett 2006, 427 -
10a
Baumann M.Baxendale IR.Kirschning A.Ley SV.Wegner J. Heterocycles 2011, 82: 1297 -
10b
Hopkin MD.Baxendale IR.Ley SV. Chem. Commun. 2010, 46: 2450 -
10c
Qian Z.Baxendale IR.Ley SV. Chem. Eur. J. 2010, 16: 12342 -
10d
Brasholz M.Johnson BA.Macdonald JM.Polyzos A.Tsanaktsidis J.Saubern S.Holmes AB.Ryan JH. Tetrahedron 2010, 66: 6445 -
10e
Tamborini L.Conti P.Pinto A.Micheli CD. Tetrahedron: Asymmetry 2010, 21: 222 -
10f
Herath A.Dahl R.Cosford NDP. Org. Lett. 2010, 12: 412 -
10g
Baxendale IR.Schou S.Sedelmeier J.Ley SV. Chem. Eur. J. 2010, 16: 89 -
10h
Baxendale IR.Ley SV.Mansfield AC.Smith CD. Angew. Chem. Int. Ed. 2009, 48: 4017 -
10i
Baxendale IR.Deeley CM.Griffiths-Jones CM.Ley SV.Saaby S.Tranmer GK. Chem. Commun. 2006, 24: 2566 -
10j
Baxendale IR.Ley SV.Smith CD.Tranmer GK. Chem. Commun. 2006, 4835 -
12a
Middleton WJ. J. Org. Chem. 1975, 40: 574 -
12b
Phillips AJ.Uto Y.Wipf P.Reno MJ.Williams DR. Org. Lett. 2000, 2: 1165 - Use of DAST in flow:
-
12c
Baumann M.Baxendale IR.Ley SV. Synlett 2008, 2111 -
12d
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611 - 14
Williams DR.Lowder PD.Gu Y.-G.Brooks DA. Tetrahedron Lett. 1997, 38: 331 - 15
Doleschall G.Seres P. J. Chem. Soc., Perkin Trans. 1 1988, 1875 - 16Compound 12 was prepared by ring opening of 2,2,6-trimethyl-4H-1,3-dioxin-4-one with phenol, see:
- 16
Clemens RJ.Hyatt JA. J. Org. Chem. 1985, 50: 2431 . Followed by diazo group transfer, see:Tullis JS.Helquist P. Org. Synth. 1997, 74: 229 - 17
Bagley MC.Buck RT.Hind SL.Moody CJ.
J. Chem. Soc., Perkin Trans. 1 1998, 591 - 18
Wipf P.Miller CP. J. Org. Chem. 1993, 58: 3604 - For related applications of PS-BEMP iminophosphorane base, see:
-
20a
Bensa D.Constantieux T.Rodriguez J. Synthesis 2004, 923 -
20b
Baumann M.Baxendale IR.Ley SV.Smith CD.Tranmer GK. Org. Lett. 2006, 8: 5231 -
21a
Krapcho AP.Jahngen EGE.Lovey AJ. Tetrahedron Lett. 1974, 15: 1091 -
21b
Krapcho AP.Weimaster JF.Eldridge JM.Jahngen EGE.Lovey AJ.Stephens WP. J. Org. Chem. 1978, 43: 138 -
22a
Mori K. Tetrahedron 1974, 30: 3810 -
22b
Grieco PA.Galatsis P.Spohn RF. Tetrahedron 1986, 42: 2847 - 23
Poulain RF.Tartar AL.Déprez BP. Tetrahedron Lett. 2001, 42: 1495
References and Notes
Vapourtec© R2+/R4 system was used; website: www.vapourtec.co.uk.
13QP-SA and QP-DMA resins are commercially available from Johnson Matthey. Website: http://www.matthey.com/.
19An Omnifit column was used, www.omnifit.com.
24
NMR Data
¹H
NMR (600 MHz, CDCl3): δ = 2.64,
2.67 (2 s, 2 × 3 H, 18-H, 19-H), 3.92,
3.93 (2 s, 2 × 3 H, 20-H, 21-H), 4.03
(t, J = 5.8
Hz, 2 H, 1′-H), 4.41 (s, 2 H, 5-H), 5.06 (d, J = 10.3 Hz,
1 H, 5′-H), 5.18 (d, J = 17.0
Hz, 1 H, 5′-H), 5.73 (td, J = 5.8,
15.0 Hz, 1 H, 2′-H), 6.22 (dd, J = 10.3,
15.0 Hz, 1 H, 3′-H), 6.31 (td, J = 10.3,
17.0 Hz, 1 H, 4′-H), 6.75 (d, J = 16.4,
1 H, 10-H), 6.88 (d, J = 8.2
Hz, 1 H, 16-H), 7.00 (t, J = 5.8
Hz, 1 H, NH), 7.07 (d, J = 1.6
Hz, 1 H, 13-H), 7.09 (dd, J = 1.6,
8.2 Hz, 1 H, 17-H), 7.44 (d, J = 16.4
Hz, 1 H, 11-H) ppm. ¹³C NMR (150 MHz): δ = 11.7,
12.4 (2 q, C-18, C-19), 39.4 (t, C-5), 40.3 (t, C-1′),
55.9, 56.0 (2 q, C-20, C-21), 108.9 (d, C-13), 110.8 (d, C-10),
111.2 (d, C-16), 117.4 (t, C-5′), 121.5 (d, C-17), 128.1
(s, C-12), 129.45, 129.49 (2 d, C-2′, C-3′), 132.8
(s, C-2), 134.5 (s, C-7), 136.1 (d, C-4′), 137.3 (d, C-11),
149.3, 150.6 (2 s, C-14, C-15), 153.8 (s, C-3), 155.3 (s, C-8),
155.6 (s, C-4), 159.1 (s, C-9), 161.7 (s, C-1), 189.4 (s, C-6) ppm.