Synlett 2011(12): 1761-1765  
DOI: 10.1055/s-0030-1260581
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Conjugated Tri(hetero)aryl Derivatives Based on One-Pot Double Suzuki-Miyaura Couplings Using Bifunctional Dipotassium Phenylene-1,4-Bis(Trifluoroborate)

Antonio Salomone, Marilena Petrera, Donato Ivan Coppi, Filippo Maria Perna, Saverio Florio, Vito Capriati*
Dipartimento Farmaco-Chimico, Università di Bari ‘A. Moro’, Consorzio Interuniversitario Nazionale ‘Metodologie e Processi Innovativi di Sintesi’ C.I.N.M.P.I.S., Via E. Orabona 4, 70125 Bari, Italy
Fax: +39(080)5442539; e-Mail: capriati@farmchim.uniba.it;
Weitere Informationen

Publikationsverlauf

Received 4 April 2011
Publikationsdatum:
05. Juli 2011 (online)

Abstract

An efficient one-pot double Suzuki-Miyaura cross-­coupling reaction between bifunctional phenylene-1,4-bis(potassium trifluoroborate) and aryl and heteroaryl bromides is described. The scope and limitations of this methodology that enables the synthesis of tri(hetero)aryl derivatives, potentially useful as drugs and in the field of materials science, have also been probed.

    References and Notes

  • 1 Arafa RK. Ismail MA. Munde M. Wison WD. Wenzler T. Brun R. Boykin DW. Eur. J. Med. Chem.  2008,  43:  2901 
  • 2a Sharmoukh W. Ko KC. Park SY. Ko JH. Lee JM. Noh C. Lee JY. Son SU. Org. Lett.  2008,  10:  5365 
  • 2b Umemoto Y. Ie Y. Saeki A. Seki S. Tagawa S. Aso Y. Org. Lett.  2008,  10:  1095 
  • 2c Lee W. Kang Y. Lee PH. J. Org. Chem.  2008,  73:  4326 
  • 2d Karsten BP. Janssen RAJ. Org. Lett.  2008,  10:  3513 
  • 3 Liu JK. Chem. Rev.  2006,  106:  2209 
  • For selected examples, see:
  • 4a Simoni D. Giannini G. Roberti M. Rondanin R. Baruchello R. Rossi M. Grisolia G. Invidiata FP. Aiello S. Marino S. Cavallini S. Siniscalchi A. Gebbia N. Crosta L. Grimaudo S. Abbadessa V. Di Cristina A. Tolomeo M. J. Med. Chem.  2005,  48:  4293 
  • 4b Roberti R. Pizzirani D. Recanatini M. Simoni D. Grimaudo S. Di Cristina A. Abbadessa V. Gebbia N. Tolomeo M. J. Med. Chem.  2006,  49:  3012 
  • 4c Ismail MA. Arafa RK. Brun R. Wenzler T. Miao Y. Wilson WD. Generaux C. Bridges A. Hall JE. Boykin DW. J. Med. Chem.  2006,  49:  5324 
  • 4d Bey E. Marchais-Oberwinkler S. Negri M. Kruchten P. Oster A. Klein T. Spadaro A. Werth R. Frotscher M. Birk B. Hartmann RW. J. Med. Chem.  2009,  52:  3703 
  • 4e Oehlrich D. Didier J.-C. Berthelot DJ.-C. Gijsen HJM. J. Med. Chem.  2011,  54:  669 
  • 5a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 5b Miyaura N. Top. Curr. Chem.  2002,  219:  11 
  • 5c Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions   de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004.  p.41-124  
  • For leading reviews, see:
  • 6a Molander GA. Ellis N. Acc. Chem. Res.  2007,  40:  275 
  • 6b Darses S. Genet J.-P. Chem. Rev.  2008,  108:  288 
  • 6c Molander GA. Canturk B. Angew. Chem. Int. Ed.  2009,  48:  9240 
  • 7 Butters M. Harvey JN. Jover J. Lennox AJJ. Lloyd-Jones GC. Murray PM. Angew. Chem. Int. Ed.  2010,  49:  5156 
  • The Suzuki cross-coupling reactions of symmetrical dihalobenzenes with arylboronic acids and esters have often led to mixtures of mono- and biscoupled products, albeit with a different selectivity according to the nature of both the halogen employed and the boron-containing species; for a survey, see:
  • 8a Sinclair DJ. Sherburn MS. J. Org. Chem.  2005,  70:  3730 
  • 8b The double Suzuki cross-coupling of phenyl-1,4-diboronic acid bispinacol ester with aryl halides has also been investigated: Chaumeil H. Drian CL. Defoin A. Synthesis  2002,  757 
  • For selected examples, see:
  • 9a Molander GA. Biolatto B. J. Org. Chem.  2003,  68:  4302 
  • 9b Molander GA. Petrillo DE. Landzberg NR. Rohanna JC. Biolatto B. Synlett  2005,  1763 
  • 9c Molander GA. Canturk B. Kennedy LE. J. Org. Chem.  2009,  74:  973 
  • 10a Gueogjian K. Singh FV. Pena JM. Amaral MFZJ. Stefani HA. Synlett  2010,  427 
  • 10b Viera AS. Cunha RLOR. Klitzke CF. Zukerman-Schpector J. Stefani HA. Tetrahedron  2010,  66:  773 
  • 11 Vedejs E. Chapman RW. Fields SC. Lin S. Schrimpf MR. J. Org. Chem.  1995,  60:  3020 
  • 12 Chase PA. Henderson LD. Piers WE. Parvez M. Clegg W. Elsegood MRJ. Organometallics  2006,  25:  349 
  • 13a Spectroscopic data of 2 are reported in the Supporting Information. The relative rapid ¹¹B quadrupole relaxation is most probably responsible for the missing one-bond ¹¹B,¹9F scalar coupling. Unfortunately, resolution in ¹¹B NMR spectrum did not improve even on employing a modified ¹¹B NMR pulse sequence, as suggested: Oliveira RA. Silva RO. Molander GA. Menezes PH. Magn. Reson. Chem.  2009,  47:  873 
  • 13b

    An X-ray crystallographic analysis is also underway and the results will be reported in due course.

  • 14a Hodgson DM. Bray CD. In Aziridine and Epoxides in Organic Synthesis   Yudin AK. Wiley-VCH; Weinheim: 2006.  p.145-184  
  • 14b Padwa A. Murphree SS. ARKIVOC  2006,  (iii):  6 
  • 14c Schneider C. Synthesis  2006,  3919 
  • 14d Capriati V. Florio S. Luisi R. Perna FM. Salomone A. Gasparrini F. Org. Lett.  2005,  7:  4895 
  • 14e García-Delgado N. Reddy KS. Solà L. Riera M. Pericàs MA. Verdaguer X. J. Org. Chem.  2005,  70:  7426 
  • 14f Capriati V. Florio S. Luisi R. Perna FM. Salomone A. J. Org. Chem.  2006,  71:  3984 
  • 14g Salomone A. Capriati V. Florio S. Luisi R. Org. Lett.  2008,  10:  1947 
  • 14h Huang K. Wang H. Stepanenko V. De Jesús M. Torruellas C. Correa W. Ortiz-Marciales M. J. Org. Chem.  2011,  76:  1883 
  • 15a Capriati V. Florio S. Luisi R. Chem. Rev.  2008,  108:  1918 
  • 15b

    Capriati, V.; Florio, S.; Salomone, A. Oxiranyllithiums as Chiral Synthons for Asymmetric Synthesis, Chap. 4, In Stereochemical Aspects of Organolithium Compounds, Vol. 26; Gawley, R. E., Ed.,
    In Topics in Stereochemistry, Siegel, J. S., Ed.; Verlag Helvetica Acta: Zürich, 2010, 135-164

  • 15c Capriati V. Florio S. Perna FM. Salomone A. Chem. Eur. J.  2010,  16:  9778 
  • 16a Cattoën X. Pericàs MA. J. Org. Chem.  2007,  72:  3253 
  • 16b Falck JR. Kumar PS. Reddy YK. Zou G. Capdevila JH. Tetrahedron Lett.  2001,  42:  7211 
  • 16c Zou G. Reddy YK. Falck JR. Tetrahedron Lett.  2001,  42:  7213 
  • 16d Molander GA. Ribagorda M. J. Am. Chem. Soc.  2003,  125:  11148 
  • Double couplings on bromoiodobenzenes, promoted by an excess of phenylboronic acid, have often led to mixtures of mono- and diarylated products; see:
  • 18a Liu L. Zhang Y. Xin B. J. Org. Chem.  2006,  71:  3994 
  • 18b Greenfield AA. Butera JA. Caufield CE. Tetrahedron Lett.  2003,  44:  2729 
  • 19 Babudri F. Farinola GM. Naso F. Synlett  2009,  2740 
  • 20a Operamolla A. Omar OH. Babudri F. Farinola GM. Naso F. J. Org. Chem.  2007,  72:  10272 
  • 20b Gompper R. Mair H.-J. Polborn K. Synthesis  1997,  696 
  • 23a Miguez JMA. Adrio LA. Sousa-Pedrares A. Vila JM. Hii KKM. J. Org. Chem.  2007,  72:  7771 
  • 23b Gan X. Jiang W. Wang W. Hu L. Org. Lett.  2009,  11:  589 
  • 23c Nawaz M. Ibad MF. Abid O.-U.-R. Khera RA. Villinger A. Langer P. Synlett  2010,  150 
  • 24 The use of boron reagents for orthogonal functionalization through Suzuki-Miyaura cross-couplings has recently been highlighted; see: Tobisu M. Chatani O. Angew. Chem. Int. Ed.  2009,  48:  3565 
  • 25 Beaumard F. Dauban P. Dodd RH. Org. Lett.  2009,  11:  1801 
17

Different solvent mixtures (e.g., MeOH-H2O, 10:1; DMF-H2O, 10:1; dioxane-H2O, 5:1), higher amount of H2O (e.g., THF-H2O, 1:1), other Pd(II) precatalysts [e.g., Pd(OAc)2] and higher temperatures proved to be less effective and provided poor yield (15-57%) of product 4a. When Cs2CO3 was used as a base instead of K2CO3, the yield of 4a was 75%, all other conditions being identical. Comparable results in terms of yield and reaction time were also obtained by employing up to 6 equiv of K2CO3.

21

Similarly, the tetraazaterphenyl derivative 4o revealed an absorption at λmax = 279 (DMSO) and fluorescence emission maximum at λmax = 428 nm (see ref. 20b).

22

The E configuration of double bonds in terphenyl 4q was ascertained from 2D NOESY correlations.

26

In contrast to what was observed in the one-pot coupling reaction of N-Boc-2,5-dibromopyrrole with two different boronic acids (see ref. 25), in our case, the addition up to 3 equiv of LiCl had a detrimental effect on the yield of 4s which, indeed, dramatically decreased to 15%. Further investigations are currently underway to find more general conditions for effecting unsymmetrical double SM couplings employing salt 2 or different bifunctional derivatives and results will be reported in due course.

27

General Procedure for the Synthesis of Compounds 4a-s: To a suspension of dipotassium phenylene-1,4-bis-(trifluoroborate) (2; 1.0 mmol) in THF-H2O (5.0 mL + 1.0 mL), K2CO3 (3 mmol), aryl(heteroaryl) bromide (2.1 mmol) (note: for the synthesis of compound 4s, 1.0 mmol of both 3s and 3b were employed instead) and PdCl2(dppf)˙CH2Cl2 (5 mol%) were sequentially added under an argon atmosphere. After the mixture was stirred at 50 ˚C for 24 h in a closed reactor, the resulting solution was cooled to r.t., diluted with brine (10 mL) and extracted with Et2O (3 × 10 mL). The solvent was finally stripped off in vacuo and the crude product so obtained was purified by silica gel column chromatography (see the Supporting Information for details) to provide the desired tri(hetero)aryl derivative.