Ultraschall Med 2012; 33(2): 170-174
DOI: 10.1055/s-0031-1281904
Rapid Communication
© Georg Thieme Verlag KG Stuttgart · New York

Real-Time Elastography of Hepatic Thermal Lesions In Vitro: Histopathological Correlation

Real-time-Elastografie von Leberläsionen bei Thermotherapie in vitro: Korrelation zur Histopathologie
P. Wiggermann
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
,
E.-M. Jung
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
,
S. Glöckner
2   Institut für Pathologie, Klinikum der Universität Regensburg
,
P. Hoffstetter
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
,
W. Uller
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
,
A. Vasilj
3   Cell Biology and Genetics, Max Planck Institute of Molecular Cell Biology and Genetics
,
A. Schreyer
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
,
C. Stroszczynski
1   Institut für Röntgendiagnostik, Klinikum der Universität Regensburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

08. Juni 2011

07. Oktober 2011

Publikationsdatum:
09. Dezember 2011 (online)

Abstract

Purpose: To evaluate the reliability of elastography, a new ultrasonographic method, for delineating thermal lesion boundaries in porcine liver tissue by comparing lesion dimensions determined by real-time elastography with the findings at gross pathology.

Materials and Methods: A total of 15 thermal lesions with diameters ranging from 17 to 60 mm were created using radiofrequency ablation (RFA). Color-coded elastography was performed by one experienced examiner, using a 6 – 15 MHz high frequency linear transducer (LOGIQ E9, GE). Lesions were examined using B-mode and real-time elastography (RTE). Lesion detection, delineation and size were assessed using B-mode and RTE immediately after each thermal ablation ( < 5 min). Measurements of the sections representing the same image plane used for elastography were taken during pathologic examination and compared to the measurements obtained from the elastograms.

Results: In our sample a statistically significant correlation in vitro between RTE and pathological measurements with respect to the lesion’s principal axis and area (r2 = 0.9338 long axis, r2 = 0.8998 short axis and r2 = 0.9676 area) was found. Overall, elastography slightly underestimated the lesion size, as judged by the digitalized pathologic images.

Conclusion: These results support that RTE outperforms conventional B-mode ultrasound and could potentially be used for the routine assessment of thermal therapies.

Zusammenfassung

Ziel: Überprüfung, inwieweit es in vitro möglich ist, mit der Real-time-Elastografie (RTE) als neue Ultraschallmethode, Läsionen nach RFA zu beurteilen im Vergleich zur Histopathologie am Schweinemodell.

Material und Methoden: Insgesamt wurden 15 Ablationsläsionen mit einem Diameter von 17 – 60 mm nach RFA untersucht. Alle Untersuchungen mittels RTE wurden von einem erfahrenen Untersucher mit einem hochauflösenden Linearschallkopf (6 – 15 MHz, LOGIQ E9, GE) durchgeführt. Die Ablationsdefekte wurden im B-Bild und mit der RTE beurteilt. Beurteilt wurden die Detektion und Abgrenzbarkeit unmittelbar nach der RFA ( < 5 min). Die Läsionsausdehnung in der RTE wurde mit dem Ablationsdefekt in der Histopathologie verglichen.

Ergebnisse: Die statistische Auswertung zeigte eine signifikante Korrelation zwischen Defektbeurteilung mittels RTE und der Histopathologie, sowohl bei Messungen des Diameters als auch bei der Läsionsfläche (r2 = 0,9338 lange Achse, r2 = 0,8998 kurze Achse sowie r2 = 0,9676 Flächenausdehnung). Insgesamt unterschätzte die RTE die Läsionsgröße im Vergleich zur Histopathologie leicht.

Schlussfolgerung: Mit der RTE bietet sich eine Möglichkeit eines verbesserten Monitorings von RFA-Läsionen in der Routine. Mit der RTE bietet sich die Möglichkeit einer routinemäßig verbesserten Beurteilung der RFA gegenüber dem konventionellen B-Bild.

 
  • References

  • 1 Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol 2000; 174: 323-331
  • 2 Antoch G, Kuehl H, Vogt FM et al. Value of CT volume imaging for optimal placement of radiofrequency ablation probes in liver lesions. J Vasc Interv Radiol 2002; 13: 1155-1161
  • 3 Kelekis AD, Terraz S, Roggan A et al. Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 2003; 13: 1100-1105
  • 4 Will K, Krug J, Jungnickel K et al. MR-compatible RF ablation system for online treatment monitoring using MR thermometry. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 1601-1604
  • 5 Hofer S, Oberholzer C, Beck S et al. Ultrasound-guided radiofrequency ablation (RFA) for inoperable gastrointestinal liver metastases. Ultraschall in Med 2008; 29: 388-392
  • 6 Solbiati L, Ierace T, Goldberg SN et al. Percutaneous US-guided radio-frequency tissue ablation of liver metastases: treatment and follow-up in 16 patients. Radiology 1997; 202: 195-203
  • 7 Rossi S, Di Stasi M, Buscarini E et al. Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. Am J Roentgenol 1996; 167: 759-768
  • 8 Lorentzen T, Skjoldbye BO, Nolsoe CP. Microwave Ablation of Liver Metastases Guided by Contrast-Enhanced Ultrasound: Experience with 125 Metastases in 39 Patients. Ultraschall in Med 2011;
  • 9 Miyamoto N, Hiramatsu K, Tsuchiya K et al. Contrast-enhanced sonography-guided radiofrequency ablation for the local recurrence of previously treated hepatocellular carcinoma undetected by B-mode sonography. J Clin Ultrasound 2010; 38: 339-345
  • 10 Seitz K, Bernatik T, Strobel D et al. Contrast-enhanced ultrasound (CEUS) for the characterization of focal liver lesions in clinical practice (DEGUM Multicenter Trial): CEUS vs. MRI – a prospective comparison in 269 patients. Ultraschall in Med 2010; 31: 492-499
  • 11 Frieser M, Kiesel J, Lindner A et al. Efficacy of contrast-enhanced US versus CT or MRI for the therapeutic control of percutaneous radiofrequency ablation in the case of hepatic malignancies. Ultraschall in Med 2011; 32: 148-153
  • 12 Varghese T, Zagzebski JA, Frank G et al. Elastographic imaging using a handheld compressor. Ultrason Imaging 2002; 24: 25-35
  • 13 Varghese T, Techavipoo U, Liu W et al. Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. Am J Roentgenol 2003; 181: 701-707
  • 14 Bharat S, Techavipoo U, Kiss MZ et al. Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. Ultrasound Med Biol 2005; 31: 415-422
  • 15 Cortelazzo S, D'Emilio A, Casarotto G et al. Vincristine as an alternative to splenectomy in severe acute ITP insensitive to steroids. Haematologica 1983; 68: 289-290
  • 16 Poon RT, Ng KK, Lam CM et al. Effectiveness of radiofrequency ablation for hepatocellular carcinomas larger than 3 cm in diameter. Arch Surg 2004; 139: 281-287
  • 17 Hori T, Nagata K, Hasuike S et al. Risk factors for the local recurrence of hepatocellular carcinoma after a single session of percutaneous radiofrequency ablation. J Gastroenterol 2003; 38: 977-981
  • 18 Ricci P, Cantisani V, Drudi F et al. Is contrast-enhanced US alternative to spiral CT in the assessment of treatment outcome of radiofrequency ablation in hepatocellular carcinoma?. Ultraschall in Med 2009; 30: 252-258
  • 19 Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 1990; 16: 231-239
  • 20 Parker KJ, Huang SR, Musulin RA et al. Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med Biol 1990; 16: 241-246
  • 21 Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans Ultrason Ferroelectr Freq Control 1990; 37: 45-53
  • 22 Zhang M, Castaneda B, Christensen J et al. Real-time sonoelastography of hepatic thermal lesions in a swine model. Med Phys 2008; 35: 4132-4141
  • 23 Righetti R, Kallel F, Stafford RJ et al. Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound Med Biol 1999; 25: 1099-1113
  • 24 Sandrin L, Tanter M, Gennisson JL et al. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 436-446
  • 25 Sandrin L, Tanter M, Catheline S et al. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 426-435
  • 26 Bercoff J, Pernot M, Tanter M et al. Monitoring thermally-induced lesions with supersonic shear imaging. Ultrason Imaging 2004; 26: 71-84
  • 27 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 396-409
  • 28 Fahey BJ, Hsu SJ, Wolf PD et al. Liver ablation guidance with acoustic radiation force impulse imaging: challenges and opportunities. Phys Med Biol 2006; 51: 3785-3808
  • 29 Heide R, Strobel D, Bernatik T et al. Characterization of focal liver lesions (FLL) with acoustic radiation force impulse (ARFI) elastometry. Ultraschall in Med 2010; 31: 405-409
  • 30 Sporea I, Sirli RL, Deleanu A et al. Acoustic radiation force impulse elastography as compared to transient elastography and liver biopsy in patients with chronic hepatopathies. Ultraschall in Med 2011; 32 (Suppl. 01) S46-S52
  • 31 Piscaglia F, Salvatore V, Di Donato R et al. Accuracy of VirtualTouch Acoustic Radiation Force Impulse (ARFI) imaging for the diagnosis of cirrhosis during liver ultrasonography. Ultraschall in Med 2011; 32: 167-175
  • 32 Pareek G, Wilkinson ER, Bharat S et al. Elastographic measurements of in-vivo radiofrequency ablation lesions of the kidney. J Endourol 2006; 20: 959-964