Synthesis 2012(6): 848-856  
DOI: 10.1055/s-0031-1289725
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart ˙ New York

Entropy-Controlled and Enantiodivergent Lewis Acid Catalysis in Water

Karolina Aplandera, U. Marcus Lindström*b, Johan Wennerberg*c
a Division of Organic Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
b Department of Chemistry, McGill University, Montréal, Quebec, H3A 2K6, Canada
c DuPont Chemoswed, P. O. Box 839, 20180 Malmö, Sweden
Fax: +46(40)186805; e-Mail: johan.wennerberg@swe.dupont.com;
Further Information

Publication History

Received 7 December 2011
Publication Date:
24 February 2012 (online)

Abstract

Developing new and useful methods in asymmetric catalysis is of continuous importance. A current challenge is to address the imperatives of green chemistry, such that processes maximize resource-efficiency and minimize the generation of waste. To this end, this article discloses the potential of α-amino acids­ in the development of entropy-controlled and enantiodivergent Lewis acid catalysis. In an ytterbium-catalyzed aqueous Michael addition reaction, natural α-amino acids induced not only a large rate acceleration, but also an unusual and remarkable reversed temperature effect on enantioselectivity. As demonstrated with 17 α-amino acids, the enantioselectivity of the reaction can be significantly altered, and even reversed, simply by modifying the reaction temperature. After determining differential thermodynamic activation parameters, it was revealed that an unusually large entropy contribution was responsible for the observed effects. By further correlation to the influence of the aqueous medium, we put forward the concept of stereospecific aqueous solvation (SAS), which describes the bearing of aqueous solvation on the equilibrium of dia­stereomeric transition states, and thus on the R/S ratio of the product.